from gym.spaces import MultiDiscrete, Dict, Discrete import numpy as np from ray.rllib.env.multi_agent_env import MultiAgentEnv, ENV_STATE class TwoStepGame(MultiAgentEnv): action_space = Discrete(2) def __init__(self, env_config): self.state = None self.agent_1 = 0 self.agent_2 = 1 # MADDPG emits action logits instead of actual discrete actions self.actions_are_logits = env_config.get("actions_are_logits", False) self.one_hot_state_encoding = env_config.get("one_hot_state_encoding", False) self.with_state = env_config.get("separate_state_space", False) if not self.one_hot_state_encoding: self.observation_space = Discrete(6) self.with_state = False else: # Each agent gets the full state (one-hot encoding of which of the # three states are active) as input with the receiving agent's # ID (1 or 2) concatenated onto the end. if self.with_state: self.observation_space = Dict({ "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]) }) else: self.observation_space = MultiDiscrete([2, 2, 2, 3]) def seed(self, seed=None): if seed: np.random.seed(seed) def reset(self): self.state = np.array([1, 0, 0]) return self._obs() def step(self, action_dict): if self.actions_are_logits: action_dict = { k: np.random.choice([0, 1], p=v) for k, v in action_dict.items() } state_index = np.flatnonzero(self.state) if state_index == 0: action = action_dict[self.agent_1] assert action in [0, 1], action if action == 0: self.state = np.array([0, 1, 0]) else: self.state = np.array([0, 0, 1]) global_rew = 0 done = False elif state_index == 1: global_rew = 7 done = True else: if action_dict[self.agent_1] == 0 and action_dict[self. agent_2] == 0: global_rew = 0 elif action_dict[self.agent_1] == 1 and action_dict[self. agent_2] == 1: global_rew = 8 else: global_rew = 1 done = True rewards = { self.agent_1: global_rew / 2.0, self.agent_2: global_rew / 2.0 } obs = self._obs() dones = {"__all__": done} infos = {} return obs, rewards, dones, infos def _obs(self): if self.with_state: return { self.agent_1: { "obs": self.agent_1_obs(), ENV_STATE: self.state }, self.agent_2: { "obs": self.agent_2_obs(), ENV_STATE: self.state } } else: return { self.agent_1: self.agent_1_obs(), self.agent_2: self.agent_2_obs() } def agent_1_obs(self): if self.one_hot_state_encoding: return np.concatenate([self.state, [1]]) else: return np.flatnonzero(self.state)[0] def agent_2_obs(self): if self.one_hot_state_encoding: return np.concatenate([self.state, [2]]) else: return np.flatnonzero(self.state)[0] + 3