import argparse import ray from ray import tune from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.examples.models.trajectory_view_utilizing_models import \ FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel from ray.rllib.models.catalog import ModelCatalog from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=200000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=3) ModelCatalog.register_custom_model( "frame_stack_model", FrameStackingCartPoleModel if args.framework != "torch" else TorchFrameStackingCartPoleModel) tune.register_env("stateless_cartpole", lambda c: StatelessCartPole()) config = { "env": "stateless_cartpole", "model": { "vf_share_layers": True, "custom_model": "frame_stack_model", "custom_model_config": { "num_frames": 16, }, # To compare against a simple LSTM: # "use_lstm": True, # "lstm_use_prev_action": True, # "lstm_use_prev_reward": True, # To compare against a simple attention net: # "use_attention": True, # "attention_use_n_prev_actions": 1, # "attention_use_n_prev_rewards": 1, }, "num_sgd_iter": 5, "vf_loss_coeff": 0.0001, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()