import unittest import ray import ray.rllib.algorithms.appo as appo from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY from ray.rllib.utils.test_utils import ( check_compute_single_action, check_train_results, framework_iterator, ) class TestAPPO(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() @classmethod def tearDownClass(cls): ray.shutdown() def test_appo_compilation(self): """Test whether APPO can be built with both frameworks.""" config = appo.APPOConfig().rollouts(num_rollout_workers=1) num_iterations = 2 for _ in framework_iterator(config, with_eager_tracing=True): print("w/o v-trace") config.vtrace = False algo = config.build(env="CartPole-v0") for i in range(num_iterations): results = algo.train() check_train_results(results) print(results) check_compute_single_action(algo) algo.stop() print("w/ v-trace") config.vtrace = True algo = config.build(env="CartPole-v0") for i in range(num_iterations): results = algo.train() check_train_results(results) print(results) check_compute_single_action(algo) algo.stop() def test_appo_compilation_use_kl_loss(self): """Test whether APPO can be built with kl_loss enabled.""" config = ( appo.APPOConfig().rollouts(num_rollout_workers=1).training(use_kl_loss=True) ) num_iterations = 2 for _ in framework_iterator(config, with_eager_tracing=True): algo = config.build(env="CartPole-v0") for i in range(num_iterations): results = algo.train() check_train_results(results) print(results) check_compute_single_action(algo) algo.stop() def test_appo_two_tf_optimizers(self): # Not explicitly setting this should cause a warning, but not fail. # config["_tf_policy_handles_more_than_one_loss"] = True config = ( appo.APPOConfig() .rollouts(num_rollout_workers=1) .training(_separate_vf_optimizer=True, _lr_vf=0.002) ) # Make sure we have two completely separate models for policy and # value function. config.model["vf_share_layers"] = False num_iterations = 2 # Only supported for tf so far. for _ in framework_iterator(config, frameworks=("tf2", "tf")): algo = config.build(env="CartPole-v0") for i in range(num_iterations): results = algo.train() check_train_results(results) print(results) check_compute_single_action(algo) algo.stop() def test_appo_entropy_coeff_schedule(self): # Initial lr, doesn't really matter because of the schedule below. config = ( appo.APPOConfig() .rollouts( num_rollout_workers=1, batch_mode="truncate_episodes", rollout_fragment_length=10, ) .resources(num_gpus=0) .training( train_batch_size=20, entropy_coeff=0.01, entropy_coeff_schedule=[ [0, 0.1], [100, 0.01], [300, 0.001], [500, 0.0001], ], ) .reporting(min_train_timesteps_per_iteration=20) ) config.min_sample_timesteps_per_iteration = 20 # 0 metrics reporting delay, this makes sure timestep, # which entropy coeff depends on, is updated after each worker rollout. config.min_time_s_per_iteration = 0 def _step_n_times(algo, n: int): """Step Algorithm n times. Returns: learning rate at the end of the execution. """ for _ in range(n): results = algo.train() print(algo.workers.local_worker().global_vars) print(results) return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][LEARNER_STATS_KEY][ "entropy_coeff" ] for _ in framework_iterator(config): algo = config.build(env="CartPole-v0") coeff = _step_n_times(algo, 10) # 200 timesteps # Should be close to the starting coeff of 0.01. self.assertLessEqual(coeff, 0.01) self.assertGreaterEqual(coeff, 0.001) coeff = _step_n_times(algo, 20) # 400 timesteps # Should have annealed to the final coeff of 0.0001. self.assertLessEqual(coeff, 0.001) algo.stop() def test_appo_model_variables(self): config = ( appo.APPOConfig() .rollouts( num_rollout_workers=1, batch_mode="truncate_episodes", rollout_fragment_length=10, ) .resources(num_gpus=0) .training( train_batch_size=20, ) .training( model={ "fcnet_hiddens": [16], } ) ) for _ in framework_iterator(config, frameworks=["tf2", "torch"]): algo = config.build(env="CartPole-v0") state = algo.get_policy(DEFAULT_POLICY_ID).get_state() # Weights and Biases for the single hidden layer, the output layer # of the policy and value networks. So 6 tensors in total. # We should not get the tensors from the target model here. self.assertEqual(len(state["weights"]), 6) if __name__ == "__main__": import sys import pytest sys.exit(pytest.main(["-v", __file__]))