from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np try: import torch except ImportError: pass # soft dep from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY from ray.rllib.utils.annotations import override from ray.rllib.utils.tracking_dict import UsageTrackingDict class TorchPolicy(Policy): """Template for a PyTorch policy and loss to use with RLlib. This is similar to TFPolicy, but for PyTorch. Attributes: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): config of the policy model (TorchModel): Torch model instance dist_class (type): Torch action distribution class """ def __init__(self, observation_space, action_space, model, loss, action_distribution_class): """Build a policy from policy and loss torch modules. Note that model will be placed on GPU device if CUDA_VISIBLE_DEVICES is set. Only single GPU is supported for now. Arguments: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. model (nn.Module): PyTorch policy module. Given observations as input, this module must return a list of outputs where the first item is action logits, and the rest can be any value. loss (func): Function that takes (policy, model, dist_class, train_batch) and returns a single scalar loss. action_distribution_class (ActionDistribution): Class for action distribution. """ self.observation_space = observation_space self.action_space = action_space self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")) self.model = model.to(self.device) self._loss = loss self._optimizer = self.optimizer() self.dist_class = action_distribution_class @override(Policy) def compute_actions(self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, **kwargs): with torch.no_grad(): input_dict = self._lazy_tensor_dict({ "obs": obs_batch, }) if prev_action_batch: input_dict["prev_actions"] = prev_action_batch if prev_reward_batch: input_dict["prev_rewards"] = prev_reward_batch model_out = self.model(input_dict, state_batches, [1]) logits, state = model_out action_dist = self.dist_class(logits, self.model) actions = action_dist.sample() return (actions.cpu().numpy(), [h.cpu().numpy() for h in state], self.extra_action_out(input_dict, state_batches, self.model)) @override(Policy) def learn_on_batch(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() grad_process_info = self.extra_grad_process() self._optimizer.step() grad_info = self.extra_grad_info(train_batch) grad_info.update(grad_process_info) return {LEARNER_STATS_KEY: grad_info} @override(Policy) def compute_gradients(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() grad_process_info = self.extra_grad_process() # Note that return values are just references; # calling zero_grad will modify the values grads = [] for p in self.model.parameters(): if p.grad is not None: grads.append(p.grad.data.cpu().numpy()) else: grads.append(None) grad_info = self.extra_grad_info(train_batch) grad_info.update(grad_process_info) return grads, {LEARNER_STATS_KEY: grad_info} @override(Policy) def apply_gradients(self, gradients): for g, p in zip(gradients, self.model.parameters()): if g is not None: p.grad = torch.from_numpy(g).to(self.device) self._optimizer.step() @override(Policy) def get_weights(self): return {k: v.cpu() for k, v in self.model.state_dict().items()} @override(Policy) def set_weights(self, weights): self.model.load_state_dict(weights) @override(Policy) def get_initial_state(self): return [s.numpy() for s in self.model.get_initial_state()] def extra_grad_process(self): """Allow subclass to do extra processing on gradients and return processing info.""" return {} def extra_action_out(self, input_dict, state_batches, model): """Returns dict of extra info to include in experience batch. Arguments: input_dict (dict): Dict of model input tensors. state_batches (list): List of state tensors. model (TorchModelV2): Reference to the model.""" return {} def extra_grad_info(self, train_batch): """Return dict of extra grad info.""" return {} def optimizer(self): """Custom PyTorch optimizer to use.""" if hasattr(self, "config"): return torch.optim.Adam( self.model.parameters(), lr=self.config["lr"]) else: return torch.optim.Adam(self.model.parameters()) def _lazy_tensor_dict(self, postprocessed_batch): train_batch = UsageTrackingDict(postprocessed_batch) def convert(arr): tensor = torch.from_numpy(np.asarray(arr)) if tensor.dtype == torch.double: tensor = tensor.float() return tensor.to(self.device) train_batch.set_get_interceptor(convert) return train_batch