"""TensorFlow policy class used for DQN"""

from typing import Dict

import gym
import numpy as np
import ray
from ray.rllib.algorithms.dqn.distributional_q_tf_model import DistributionalQTFModel
from ray.rllib.evaluation.postprocessing import adjust_nstep
from ray.rllib.models import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import (
    LearningRateSchedule,
    TargetNetworkMixin,
)
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.exploration import ParameterNoise
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.tf_utils import (
    huber_loss,
    make_tf_callable,
    minimize_and_clip,
    reduce_mean_ignore_inf,
)
from ray.rllib.utils.typing import ModelGradients, TensorType, TrainerConfigDict

tf1, tf, tfv = try_import_tf()

Q_SCOPE = "q_func"
Q_TARGET_SCOPE = "target_q_func"

# Importance sampling weights for prioritized replay
PRIO_WEIGHTS = "weights"


class QLoss:
    def __init__(
        self,
        q_t_selected: TensorType,
        q_logits_t_selected: TensorType,
        q_tp1_best: TensorType,
        q_dist_tp1_best: TensorType,
        importance_weights: TensorType,
        rewards: TensorType,
        done_mask: TensorType,
        gamma: float = 0.99,
        n_step: int = 1,
        num_atoms: int = 1,
        v_min: float = -10.0,
        v_max: float = 10.0,
    ):

        if num_atoms > 1:
            # Distributional Q-learning which corresponds to an entropy loss

            z = tf.range(num_atoms, dtype=tf.float32)
            z = v_min + z * (v_max - v_min) / float(num_atoms - 1)

            # (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
            r_tau = tf.expand_dims(rewards, -1) + gamma ** n_step * tf.expand_dims(
                1.0 - done_mask, -1
            ) * tf.expand_dims(z, 0)
            r_tau = tf.clip_by_value(r_tau, v_min, v_max)
            b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
            lb = tf.floor(b)
            ub = tf.math.ceil(b)
            # indispensable judgement which is missed in most implementations
            # when b happens to be an integer, lb == ub, so pr_j(s', a*) will
            # be discarded because (ub-b) == (b-lb) == 0
            floor_equal_ceil = tf.cast(tf.less(ub - lb, 0.5), tf.float32)

            l_project = tf.one_hot(
                tf.cast(lb, dtype=tf.int32), num_atoms
            )  # (batch_size, num_atoms, num_atoms)
            u_project = tf.one_hot(
                tf.cast(ub, dtype=tf.int32), num_atoms
            )  # (batch_size, num_atoms, num_atoms)
            ml_delta = q_dist_tp1_best * (ub - b + floor_equal_ceil)
            mu_delta = q_dist_tp1_best * (b - lb)
            ml_delta = tf.reduce_sum(l_project * tf.expand_dims(ml_delta, -1), axis=1)
            mu_delta = tf.reduce_sum(u_project * tf.expand_dims(mu_delta, -1), axis=1)
            m = ml_delta + mu_delta

            # Rainbow paper claims that using this cross entropy loss for
            # priority is robust and insensitive to `prioritized_replay_alpha`
            self.td_error = tf.nn.softmax_cross_entropy_with_logits(
                labels=m, logits=q_logits_t_selected
            )
            self.loss = tf.reduce_mean(
                self.td_error * tf.cast(importance_weights, tf.float32)
            )
            self.stats = {
                # TODO: better Q stats for dist dqn
                "mean_td_error": tf.reduce_mean(self.td_error),
            }
        else:
            q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best

            # compute RHS of bellman equation
            q_t_selected_target = rewards + gamma ** n_step * q_tp1_best_masked

            # compute the error (potentially clipped)
            self.td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
            self.loss = tf.reduce_mean(
                tf.cast(importance_weights, tf.float32) * huber_loss(self.td_error)
            )
            self.stats = {
                "mean_q": tf.reduce_mean(q_t_selected),
                "min_q": tf.reduce_min(q_t_selected),
                "max_q": tf.reduce_max(q_t_selected),
                "mean_td_error": tf.reduce_mean(self.td_error),
            }


class ComputeTDErrorMixin:
    """Assign the `compute_td_error` method to the DQNTFPolicy

    This allows us to prioritize on the worker side.
    """

    def __init__(self):
        @make_tf_callable(self.get_session(), dynamic_shape=True)
        def compute_td_error(
            obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights
        ):
            # Do forward pass on loss to update td error attribute
            build_q_losses(
                self,
                self.model,
                None,
                {
                    SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
                    SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
                    SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
                    SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
                    SampleBatch.DONES: tf.convert_to_tensor(done_mask),
                    PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
                },
            )

            return self.q_loss.td_error

        self.compute_td_error = compute_td_error


def build_q_model(
    policy: Policy,
    obs_space: gym.spaces.Space,
    action_space: gym.spaces.Space,
    config: TrainerConfigDict,
) -> ModelV2:
    """Build q_model and target_model for DQN

    Args:
        policy: The Policy, which will use the model for optimization.
        obs_space (gym.spaces.Space): The policy's observation space.
        action_space (gym.spaces.Space): The policy's action space.
        config (TrainerConfigDict):

    Returns:
        ModelV2: The Model for the Policy to use.
            Note: The target q model will not be returned, just assigned to
            `policy.target_model`.
    """
    if not isinstance(action_space, gym.spaces.Discrete):
        raise UnsupportedSpaceException(
            "Action space {} is not supported for DQN.".format(action_space)
        )

    if config["hiddens"]:
        # try to infer the last layer size, otherwise fall back to 256
        num_outputs = ([256] + list(config["model"]["fcnet_hiddens"]))[-1]
        config["model"]["no_final_linear"] = True
    else:
        num_outputs = action_space.n

    q_model = ModelCatalog.get_model_v2(
        obs_space=obs_space,
        action_space=action_space,
        num_outputs=num_outputs,
        model_config=config["model"],
        framework="tf",
        model_interface=DistributionalQTFModel,
        name=Q_SCOPE,
        num_atoms=config["num_atoms"],
        dueling=config["dueling"],
        q_hiddens=config["hiddens"],
        use_noisy=config["noisy"],
        v_min=config["v_min"],
        v_max=config["v_max"],
        sigma0=config["sigma0"],
        # TODO(sven): Move option to add LayerNorm after each Dense
        #  generically into ModelCatalog.
        add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
        or config["exploration_config"]["type"] == "ParameterNoise",
    )

    policy.target_model = ModelCatalog.get_model_v2(
        obs_space=obs_space,
        action_space=action_space,
        num_outputs=num_outputs,
        model_config=config["model"],
        framework="tf",
        model_interface=DistributionalQTFModel,
        name=Q_TARGET_SCOPE,
        num_atoms=config["num_atoms"],
        dueling=config["dueling"],
        q_hiddens=config["hiddens"],
        use_noisy=config["noisy"],
        v_min=config["v_min"],
        v_max=config["v_max"],
        sigma0=config["sigma0"],
        # TODO(sven): Move option to add LayerNorm after each Dense
        #  generically into ModelCatalog.
        add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
        or config["exploration_config"]["type"] == "ParameterNoise",
    )

    return q_model


def get_distribution_inputs_and_class(
    policy: Policy, model: ModelV2, input_dict: SampleBatch, *, explore=True, **kwargs
):
    q_vals = compute_q_values(
        policy, model, input_dict, state_batches=None, explore=explore
    )
    q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals

    policy.q_values = q_vals

    return policy.q_values, Categorical, []  # state-out


def build_q_losses(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
    """Constructs the loss for DQNTFPolicy.

    Args:
        policy: The Policy to calculate the loss for.
        model (ModelV2): The Model to calculate the loss for.
        train_batch: The training data.

    Returns:
        TensorType: A single loss tensor.
    """
    config = policy.config
    # q network evaluation
    q_t, q_logits_t, q_dist_t, _ = compute_q_values(
        policy,
        model,
        SampleBatch({"obs": train_batch[SampleBatch.CUR_OBS]}),
        state_batches=None,
        explore=False,
    )

    # target q network evalution
    q_tp1, q_logits_tp1, q_dist_tp1, _ = compute_q_values(
        policy,
        policy.target_model,
        SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
        state_batches=None,
        explore=False,
    )
    if not hasattr(policy, "target_q_func_vars"):
        policy.target_q_func_vars = policy.target_model.variables()

    # q scores for actions which we know were selected in the given state.
    one_hot_selection = tf.one_hot(
        tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32), policy.action_space.n
    )
    q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
    q_logits_t_selected = tf.reduce_sum(
        q_logits_t * tf.expand_dims(one_hot_selection, -1), 1
    )

    # compute estimate of best possible value starting from state at t + 1
    if config["double_q"]:
        (
            q_tp1_using_online_net,
            q_logits_tp1_using_online_net,
            q_dist_tp1_using_online_net,
            _,
        ) = compute_q_values(
            policy,
            model,
            SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
            state_batches=None,
            explore=False,
        )
        q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
        q_tp1_best_one_hot_selection = tf.one_hot(
            q_tp1_best_using_online_net, policy.action_space.n
        )
        q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
        q_dist_tp1_best = tf.reduce_sum(
            q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
        )
    else:
        q_tp1_best_one_hot_selection = tf.one_hot(
            tf.argmax(q_tp1, 1), policy.action_space.n
        )
        q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
        q_dist_tp1_best = tf.reduce_sum(
            q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
        )

    policy.q_loss = QLoss(
        q_t_selected,
        q_logits_t_selected,
        q_tp1_best,
        q_dist_tp1_best,
        train_batch[PRIO_WEIGHTS],
        train_batch[SampleBatch.REWARDS],
        tf.cast(train_batch[SampleBatch.DONES], tf.float32),
        config["gamma"],
        config["n_step"],
        config["num_atoms"],
        config["v_min"],
        config["v_max"],
    )

    return policy.q_loss.loss


def adam_optimizer(
    policy: Policy, config: TrainerConfigDict
) -> "tf.keras.optimizers.Optimizer":
    if policy.config["framework"] in ["tf2", "tfe"]:
        return tf.keras.optimizers.Adam(
            learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
        )
    else:
        return tf1.train.AdamOptimizer(
            learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
        )


def clip_gradients(
    policy: Policy, optimizer: "tf.keras.optimizers.Optimizer", loss: TensorType
) -> ModelGradients:
    if not hasattr(policy, "q_func_vars"):
        policy.q_func_vars = policy.model.variables()

    return minimize_and_clip(
        optimizer,
        loss,
        var_list=policy.q_func_vars,
        clip_val=policy.config["grad_clip"],
    )


def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]:
    return dict(
        {
            "cur_lr": tf.cast(policy.cur_lr, tf.float64),
        },
        **policy.q_loss.stats
    )


def setup_mid_mixins(policy: Policy, obs_space, action_space, config) -> None:
    LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
    ComputeTDErrorMixin.__init__(policy)


def setup_late_mixins(
    policy: Policy,
    obs_space: gym.spaces.Space,
    action_space: gym.spaces.Space,
    config: TrainerConfigDict,
) -> None:
    TargetNetworkMixin.__init__(policy, obs_space, action_space, config)


def compute_q_values(
    policy: Policy,
    model: ModelV2,
    input_batch: SampleBatch,
    state_batches=None,
    seq_lens=None,
    explore=None,
    is_training: bool = False,
):

    config = policy.config

    model_out, state = model(input_batch, state_batches or [], seq_lens)

    if config["num_atoms"] > 1:
        (
            action_scores,
            z,
            support_logits_per_action,
            logits,
            dist,
        ) = model.get_q_value_distributions(model_out)
    else:
        (action_scores, logits, dist) = model.get_q_value_distributions(model_out)

    if config["dueling"]:
        state_score = model.get_state_value(model_out)
        if config["num_atoms"] > 1:
            support_logits_per_action_mean = tf.reduce_mean(
                support_logits_per_action, 1
            )
            support_logits_per_action_centered = (
                support_logits_per_action
                - tf.expand_dims(support_logits_per_action_mean, 1)
            )
            support_logits_per_action = (
                tf.expand_dims(state_score, 1) + support_logits_per_action_centered
            )
            support_prob_per_action = tf.nn.softmax(logits=support_logits_per_action)
            value = tf.reduce_sum(input_tensor=z * support_prob_per_action, axis=-1)
            logits = support_logits_per_action
            dist = support_prob_per_action
        else:
            action_scores_mean = reduce_mean_ignore_inf(action_scores, 1)
            action_scores_centered = action_scores - tf.expand_dims(
                action_scores_mean, 1
            )
            value = state_score + action_scores_centered
    else:
        value = action_scores

    return value, logits, dist, state


def postprocess_nstep_and_prio(
    policy: Policy, batch: SampleBatch, other_agent=None, episode=None
) -> SampleBatch:
    # N-step Q adjustments.
    if policy.config["n_step"] > 1:
        adjust_nstep(policy.config["n_step"], policy.config["gamma"], batch)

    # Create dummy prio-weights (1.0) in case we don't have any in
    # the batch.
    if PRIO_WEIGHTS not in batch:
        batch[PRIO_WEIGHTS] = np.ones_like(batch[SampleBatch.REWARDS])

    # Prioritize on the worker side.
    if batch.count > 0 and policy.config["replay_buffer_config"].get(
        "worker_side_prioritization", False
    ):
        td_errors = policy.compute_td_error(
            batch[SampleBatch.OBS],
            batch[SampleBatch.ACTIONS],
            batch[SampleBatch.REWARDS],
            batch[SampleBatch.NEXT_OBS],
            batch[SampleBatch.DONES],
            batch[PRIO_WEIGHTS],
        )
        # Retain compatibility with old-style Replay args
        epsilon = policy.config.get("replay_buffer_config", {}).get(
            "prioritized_replay_eps"
        ) or policy.config.get("prioritized_replay_eps")
        if epsilon is None:
            raise ValueError("prioritized_replay_eps not defined in config.")

        new_priorities = np.abs(convert_to_numpy(td_errors)) + epsilon
        batch[PRIO_WEIGHTS] = new_priorities

    return batch


DQNTFPolicy = build_tf_policy(
    name="DQNTFPolicy",
    get_default_config=lambda: ray.rllib.algorithms.dqn.dqn.DEFAULT_CONFIG,
    make_model=build_q_model,
    action_distribution_fn=get_distribution_inputs_and_class,
    loss_fn=build_q_losses,
    stats_fn=build_q_stats,
    postprocess_fn=postprocess_nstep_and_prio,
    optimizer_fn=adam_optimizer,
    compute_gradients_fn=clip_gradients,
    extra_action_out_fn=lambda policy: {"q_values": policy.q_values},
    extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
    before_loss_init=setup_mid_mixins,
    after_init=setup_late_mixins,
    mixins=[
        TargetNetworkMixin,
        ComputeTDErrorMixin,
        LearningRateSchedule,
    ],
)