import argparse from gym.spaces import Dict, Tuple, Box, Discrete import os import ray from ray import air, tune from ray.tune.registry import register_env from ray.rllib.examples.env.nested_space_repeat_after_me_env import ( NestedSpaceRepeatAfterMeEnv, ) from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.", ) parser.add_argument( "--stop-iters", type=int, default=100, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=0.0, help="Reward at which we stop training." ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode) register_env( "NestedSpaceRepeatAfterMeEnv", lambda c: NestedSpaceRepeatAfterMeEnv(c) ) config = { "env": "NestedSpaceRepeatAfterMeEnv", "env_config": { "space": Dict( { "a": Tuple([Dict({"d": Box(-10.0, 10.0, ()), "e": Discrete(2)})]), "b": Box(-10.0, 10.0, (2,)), "c": Discrete(4), } ), }, "entropy_coeff": 0.00005, # We don't want high entropy in this Env. "gamma": 0.0, # No history in Env (bandit problem). "lr": 0.0005, "num_envs_per_worker": 20, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_sgd_iter": 4, "num_workers": 0, "vf_loss_coeff": 0.01, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, } results = tune.Tuner( args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=1) ).fit() if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()