cluster_name: ray-rllib-regression-tests min_workers: 0 max_workers: 0 docker: image: anyscale/ray-ml:latest-gpu container_name: ray_container pull_before_run: True # Cloud-provider specific configuration. provider: type: aws region: us-west-2 availability_zone: us-west-2a cache_stopped_nodes: False # How Ray will authenticate with newly launched nodes. auth: ssh_user: ubuntu head_node: InstanceType: p2.xlarge # Cheaper 1GPU K80 instance # Set primary volume to 25 GiB BlockDeviceMappings: - DeviceName: /dev/sda1 Ebs: VolumeSize: 100 # List of shell commands to run to set up nodes. setup_commands: - apt-get install -y libglib2.0-0 libcudnn7=7.6.5.32-1+cuda10.1 curl unzip gcc python3-dev # Command to start ray on the head node. You don't need to change this. head_start_ray_commands: - ray stop - ulimit -n 65536; OMP_NUM_THREADS=1 ray start --head --redis-port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml # Command to start ray on worker nodes. You don't need to change this. worker_start_ray_commands: - ray stop - ulimit -n 65536; OMP_NUM_THREADS=1 ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076