import unittest from copy import deepcopy import ray from ray.tune.registry import register_env from ray.rllib.env import PettingZooEnv from ray.rllib.agents.registry import get_trainer_class from pettingzoo.mpe import simple_spread_v2 class TestPettingZooEnv(unittest.TestCase): def setUp(self) -> None: ray.init() def tearDown(self) -> None: ray.shutdown() def test_pettingzoo_env(self): register_env("simple_spread", lambda _: PettingZooEnv(simple_spread_v2.env())) agent_class = get_trainer_class("PPO") config = deepcopy(agent_class._default_config) config["multiagent"] = { # Set of policy IDs (by default, will use Trainer's # default policy class, the env's obs/act spaces and config={}). "policies": {"av"}, # Mapping function that always returns "av" as policy ID to use # (for any agent). "policy_mapping_fn": lambda agent_id, episode, **kwargs: "av" } config["log_level"] = "DEBUG" config["num_workers"] = 0 config["rollout_fragment_length"] = 30 config["train_batch_size"] = 200 config["horizon"] = 200 # After n steps, force reset simulation config["no_done_at_end"] = False agent = agent_class(env="simple_spread", config=config) agent.train() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))