from collections import defaultdict, namedtuple import logging import numpy as np import queue import threading import time from ray.util.debug import log_once from ray.rllib.evaluation.episode import MultiAgentEpisode from ray.rllib.evaluation.rollout_metrics import RolloutMetrics from ray.rllib.evaluation.sample_batch_builder import \ MultiAgentSampleBatchBuilder from ray.rllib.policy.policy import clip_action from ray.rllib.policy.tf_policy import TFPolicy from ray.rllib.env.base_env import BaseEnv, ASYNC_RESET_RETURN from ray.rllib.env.atari_wrappers import get_wrapper_by_cls, MonitorEnv from ray.rllib.offline import InputReader from ray.rllib.utils import try_import_tree from ray.rllib.utils.annotations import override from ray.rllib.utils.debug import summarize from ray.rllib.utils.tf_run_builder import TFRunBuilder from ray.rllib.utils.space_utils import flatten_to_single_ndarray tree = try_import_tree() logger = logging.getLogger(__name__) PolicyEvalData = namedtuple("PolicyEvalData", [ "env_id", "agent_id", "obs", "info", "rnn_state", "prev_action", "prev_reward" ]) class PerfStats: """Sampler perf stats that will be included in rollout metrics.""" def __init__(self): self.iters = 0 self.env_wait_time = 0.0 self.processing_time = 0.0 self.inference_time = 0.0 def get(self): return { "mean_env_wait_ms": self.env_wait_time * 1000 / self.iters, "mean_processing_ms": self.processing_time * 1000 / self.iters, "mean_inference_ms": self.inference_time * 1000 / self.iters } class SamplerInput(InputReader): """Reads input experiences from an existing sampler.""" @override(InputReader) def next(self): batches = [self.get_data()] batches.extend(self.get_extra_batches()) if len(batches) > 1: return batches[0].concat_samples(batches) else: return batches[0] class SyncSampler(SamplerInput): def __init__(self, worker, env, policies, policy_mapping_fn, preprocessors, obs_filters, clip_rewards, rollout_fragment_length, callbacks, horizon=None, pack=False, tf_sess=None, clip_actions=True, soft_horizon=False, no_done_at_end=False, observation_fn=None): self.base_env = BaseEnv.to_base_env(env) self.rollout_fragment_length = rollout_fragment_length self.horizon = horizon self.policies = policies self.policy_mapping_fn = policy_mapping_fn self.preprocessors = preprocessors self.obs_filters = obs_filters self.extra_batches = queue.Queue() self.perf_stats = PerfStats() self.rollout_provider = _env_runner( worker, self.base_env, self.extra_batches.put, self.policies, self.policy_mapping_fn, self.rollout_fragment_length, self.horizon, self.preprocessors, self.obs_filters, clip_rewards, clip_actions, pack, callbacks, tf_sess, self.perf_stats, soft_horizon, no_done_at_end, observation_fn) self.metrics_queue = queue.Queue() def get_data(self): while True: item = next(self.rollout_provider) if isinstance(item, RolloutMetrics): self.metrics_queue.put(item) else: return item def get_metrics(self): completed = [] while True: try: completed.append(self.metrics_queue.get_nowait()._replace( perf_stats=self.perf_stats.get())) except queue.Empty: break return completed def get_extra_batches(self): extra = [] while True: try: extra.append(self.extra_batches.get_nowait()) except queue.Empty: break return extra class AsyncSampler(threading.Thread, SamplerInput): def __init__(self, worker, env, policies, policy_mapping_fn, preprocessors, obs_filters, clip_rewards, rollout_fragment_length, callbacks, horizon=None, pack=False, tf_sess=None, clip_actions=True, blackhole_outputs=False, soft_horizon=False, no_done_at_end=False, observation_fn=None): for _, f in obs_filters.items(): assert getattr(f, "is_concurrent", False), \ "Observation Filter must support concurrent updates." self.worker = worker self.base_env = BaseEnv.to_base_env(env) threading.Thread.__init__(self) self.queue = queue.Queue(5) self.extra_batches = queue.Queue() self.metrics_queue = queue.Queue() self.rollout_fragment_length = rollout_fragment_length self.horizon = horizon self.policies = policies self.policy_mapping_fn = policy_mapping_fn self.preprocessors = preprocessors self.obs_filters = obs_filters self.clip_rewards = clip_rewards self.daemon = True self.pack = pack self.tf_sess = tf_sess self.callbacks = callbacks self.clip_actions = clip_actions self.blackhole_outputs = blackhole_outputs self.soft_horizon = soft_horizon self.no_done_at_end = no_done_at_end self.perf_stats = PerfStats() self.shutdown = False self.observation_fn = observation_fn def run(self): try: self._run() except BaseException as e: self.queue.put(e) raise e def _run(self): if self.blackhole_outputs: queue_putter = (lambda x: None) extra_batches_putter = (lambda x: None) else: queue_putter = self.queue.put extra_batches_putter = ( lambda x: self.extra_batches.put(x, timeout=600.0)) rollout_provider = _env_runner( self.worker, self.base_env, extra_batches_putter, self.policies, self.policy_mapping_fn, self.rollout_fragment_length, self.horizon, self.preprocessors, self.obs_filters, self.clip_rewards, self.clip_actions, self.pack, self.callbacks, self.tf_sess, self.perf_stats, self.soft_horizon, self.no_done_at_end, self.observation_fn) while not self.shutdown: # The timeout variable exists because apparently, if one worker # dies, the other workers won't die with it, unless the timeout is # set to some large number. This is an empirical observation. item = next(rollout_provider) if isinstance(item, RolloutMetrics): self.metrics_queue.put(item) else: queue_putter(item) def get_data(self): if not self.is_alive(): raise RuntimeError("Sampling thread has died") rollout = self.queue.get(timeout=600.0) # Propagate errors if isinstance(rollout, BaseException): raise rollout return rollout def get_metrics(self): completed = [] while True: try: completed.append(self.metrics_queue.get_nowait()._replace( perf_stats=self.perf_stats.get())) except queue.Empty: break return completed def get_extra_batches(self): extra = [] while True: try: extra.append(self.extra_batches.get_nowait()) except queue.Empty: break return extra def _env_runner(worker, base_env, extra_batch_callback, policies, policy_mapping_fn, rollout_fragment_length, horizon, preprocessors, obs_filters, clip_rewards, clip_actions, pack, callbacks, tf_sess, perf_stats, soft_horizon, no_done_at_end, observation_fn): """This implements the common experience collection logic. Args: worker (RolloutWorker): reference to the current rollout worker. base_env (BaseEnv): env implementing BaseEnv. extra_batch_callback (fn): function to send extra batch data to. policies (dict): Map of policy ids to Policy instances. policy_mapping_fn (func): Function that maps agent ids to policy ids. This is called when an agent first enters the environment. The agent is then "bound" to the returned policy for the episode. rollout_fragment_length (int): Number of episode steps before `SampleBatch` is yielded. Set to infinity to yield complete episodes. horizon (int): Horizon of the episode. preprocessors (dict): Map of policy id to preprocessor for the observations prior to filtering. obs_filters (dict): Map of policy id to filter used to process observations for the policy. clip_rewards (bool): Whether to clip rewards before postprocessing. pack (bool): Whether to pack multiple episodes into each batch. This guarantees batches will be exactly `rollout_fragment_length` in size. clip_actions (bool): Whether to clip actions to the space range. callbacks (DefaultCallbacks): User callbacks to run on episode events. tf_sess (Session|None): Optional tensorflow session to use for batching TF policy evaluations. perf_stats (PerfStats): Record perf stats into this object. soft_horizon (bool): Calculate rewards but don't reset the environment when the horizon is hit. no_done_at_end (bool): Ignore the done=True at the end of the episode and instead record done=False. observation_fn (ObservationFunction): Optional multi-agent observation func to use for preprocessing observations. Yields: rollout (SampleBatch): Object containing state, action, reward, terminal condition, and other fields as dictated by `policy`. """ # Try to get Env's max_episode_steps prop. If it doesn't exist, catch # error and continue. max_episode_steps = None try: max_episode_steps = base_env.get_unwrapped()[0].spec.max_episode_steps except Exception: pass # Trainer has a given `horizon` setting. if horizon: # `horizon` is larger than env's limit -> Error and explain how # to increase Env's own episode limit. if max_episode_steps and horizon > max_episode_steps: raise ValueError( "Your `horizon` setting ({}) is larger than the Env's own " "timestep limit ({})! Try to increase the Env's limit via " "setting its `spec.max_episode_steps` property.".format( horizon, max_episode_steps)) # Otherwise, set Trainer's horizon to env's max-steps. elif max_episode_steps: horizon = max_episode_steps logger.debug( "No episode horizon specified, setting it to Env's limit ({}).". format(max_episode_steps)) else: horizon = float("inf") logger.debug("No episode horizon specified, assuming inf.") # Pool of batch builders, which can be shared across episodes to pack # trajectory data. batch_builder_pool = [] def get_batch_builder(): if batch_builder_pool: return batch_builder_pool.pop() else: return MultiAgentSampleBatchBuilder(policies, clip_rewards, callbacks) def new_episode(): episode = MultiAgentEpisode(policies, policy_mapping_fn, get_batch_builder, extra_batch_callback) # Call each policy's Exploration.on_episode_start method. for p in policies.values(): if getattr(p, "exploration", None) is not None: p.exploration.on_episode_start( policy=p, environment=base_env, episode=episode, tf_sess=getattr(p, "_sess", None)) callbacks.on_episode_start( worker=worker, base_env=base_env, policies=policies, episode=episode) return episode active_episodes = defaultdict(new_episode) while True: perf_stats.iters += 1 t0 = time.time() # Get observations from all ready agents unfiltered_obs, rewards, dones, infos, off_policy_actions = \ base_env.poll() perf_stats.env_wait_time += time.time() - t0 if log_once("env_returns"): logger.info("Raw obs from env: {}".format( summarize(unfiltered_obs))) logger.info("Info return from env: {}".format(summarize(infos))) # Process observations and prepare for policy evaluation t1 = time.time() active_envs, to_eval, outputs = _process_observations( worker, base_env, policies, batch_builder_pool, active_episodes, unfiltered_obs, rewards, dones, infos, off_policy_actions, horizon, preprocessors, obs_filters, rollout_fragment_length, pack, callbacks, soft_horizon, no_done_at_end, observation_fn) perf_stats.processing_time += time.time() - t1 for o in outputs: yield o # Do batched policy eval t2 = time.time() eval_results = _do_policy_eval(tf_sess, to_eval, policies, active_episodes) perf_stats.inference_time += time.time() - t2 # Process results and update episode state t3 = time.time() actions_to_send = _process_policy_eval_results( to_eval, eval_results, active_episodes, active_envs, off_policy_actions, policies, clip_actions) perf_stats.processing_time += time.time() - t3 # Return computed actions to ready envs. We also send to envs that have # taken off-policy actions; those envs are free to ignore the action. t4 = time.time() base_env.send_actions(actions_to_send) perf_stats.env_wait_time += time.time() - t4 def _process_observations( worker, base_env, policies, batch_builder_pool, active_episodes, unfiltered_obs, rewards, dones, infos, off_policy_actions, horizon, preprocessors, obs_filters, rollout_fragment_length, pack, callbacks, soft_horizon, no_done_at_end, observation_fn): """Record new data from the environment and prepare for policy evaluation. Returns: active_envs: set of non-terminated env ids to_eval: map of policy_id to list of agent PolicyEvalData outputs: list of metrics and samples to return from the sampler """ active_envs = set() to_eval = defaultdict(list) outputs = [] large_batch_threshold = max(1000, rollout_fragment_length * 10) if \ rollout_fragment_length != float("inf") else 5000 # For each environment for env_id, agent_obs in unfiltered_obs.items(): new_episode = env_id not in active_episodes episode = active_episodes[env_id] if not new_episode: episode.length += 1 episode.batch_builder.count += 1 episode._add_agent_rewards(rewards[env_id]) if (episode.batch_builder.total() > large_batch_threshold and log_once("large_batch_warning")): logger.warning( "More than {} observations for {} env steps ".format( episode.batch_builder.total(), episode.batch_builder.count) + "are buffered in " "the sampler. If this is more than you expected, check that " "that you set a horizon on your environment correctly and that" " it terminates at some point. " "Note: In multi-agent environments, `rollout_fragment_length` " "sets the batch size based on environment steps, not the " "steps of " "individual agents, which can result in unexpectedly large " "batches. Also, you may be in evaluation waiting for your Env " "to terminate (batch_mode=`complete_episodes`). Make sure it " "does at some point.") # Check episode termination conditions if dones[env_id]["__all__"] or episode.length >= horizon: hit_horizon = (episode.length >= horizon and not dones[env_id]["__all__"]) all_done = True atari_metrics = _fetch_atari_metrics(base_env) if atari_metrics is not None: for m in atari_metrics: outputs.append( m._replace(custom_metrics=episode.custom_metrics)) else: outputs.append( RolloutMetrics(episode.length, episode.total_reward, dict(episode.agent_rewards), episode.custom_metrics, {}, episode.hist_data)) else: hit_horizon = False all_done = False active_envs.add(env_id) # Custom observation function is applied before preprocessing. if observation_fn: agent_obs = observation_fn( agent_obs=agent_obs, worker=worker, base_env=base_env, policies=policies, episode=episode) if not isinstance(agent_obs, dict): raise ValueError( "observe() must return a dict of agent observations") # For each agent in the environment. for agent_id, raw_obs in agent_obs.items(): assert agent_id != "__all__" policy_id = episode.policy_for(agent_id) prep_obs = _get_or_raise(preprocessors, policy_id).transform(raw_obs) if log_once("prep_obs"): logger.info("Preprocessed obs: {}".format(summarize(prep_obs))) filtered_obs = _get_or_raise(obs_filters, policy_id)(prep_obs) if log_once("filtered_obs"): logger.info("Filtered obs: {}".format(summarize(filtered_obs))) agent_done = bool(all_done or dones[env_id].get(agent_id)) if not agent_done: to_eval[policy_id].append( PolicyEvalData(env_id, agent_id, filtered_obs, infos[env_id].get(agent_id, {}), episode.rnn_state_for(agent_id), episode.last_action_for(agent_id), rewards[env_id][agent_id] or 0.0)) last_observation = episode.last_observation_for(agent_id) episode._set_last_observation(agent_id, filtered_obs) episode._set_last_raw_obs(agent_id, raw_obs) episode._set_last_info(agent_id, infos[env_id].get(agent_id, {})) # Record transition info if applicable if (last_observation is not None and infos[env_id].get( agent_id, {}).get("training_enabled", True)): episode.batch_builder.add_values( agent_id, policy_id, t=episode.length - 1, eps_id=episode.episode_id, agent_index=episode._agent_index(agent_id), obs=last_observation, actions=episode.last_action_for(agent_id), rewards=rewards[env_id][agent_id], prev_actions=episode.prev_action_for(agent_id), prev_rewards=episode.prev_reward_for(agent_id), dones=(False if (no_done_at_end or (hit_horizon and soft_horizon)) else agent_done), infos=infos[env_id].get(agent_id, {}), new_obs=filtered_obs, **episode.last_pi_info_for(agent_id)) # Invoke the step callback after the step is logged to the episode callbacks.on_episode_step( worker=worker, base_env=base_env, episode=episode) # Cut the batch if we're not packing multiple episodes into one, # or if we've exceeded the requested batch size. if episode.batch_builder.has_pending_agent_data(): if dones[env_id]["__all__"] and not no_done_at_end: episode.batch_builder.check_missing_dones() if (all_done and not pack) or \ episode.batch_builder.count >= rollout_fragment_length: outputs.append(episode.batch_builder.build_and_reset(episode)) elif all_done: # Make sure postprocessor stays within one episode episode.batch_builder.postprocess_batch_so_far(episode) if all_done: # Handle episode termination batch_builder_pool.append(episode.batch_builder) # Call each policy's Exploration.on_episode_end method. for p in policies.values(): if getattr(p, "exploration", None) is not None: p.exploration.on_episode_end( policy=p, environment=base_env, episode=episode, tf_sess=getattr(p, "_sess", None)) # Call custom on_episode_end callback. callbacks.on_episode_end( worker=worker, base_env=base_env, policies=policies, episode=episode) if hit_horizon and soft_horizon: episode.soft_reset() resetted_obs = agent_obs else: del active_episodes[env_id] resetted_obs = base_env.try_reset(env_id) if resetted_obs is None: # Reset not supported, drop this env from the ready list if horizon != float("inf"): raise ValueError( "Setting episode horizon requires reset() support " "from the environment.") elif resetted_obs != ASYNC_RESET_RETURN: # Creates a new episode if this is not async return # If reset is async, we will get its result in some future poll episode = active_episodes[env_id] if observation_fn: resetted_obs = observation_fn( agent_obs=resetted_obs, worker=worker, base_env=base_env, policies=policies, episode=episode) for agent_id, raw_obs in resetted_obs.items(): policy_id = episode.policy_for(agent_id) policy = _get_or_raise(policies, policy_id) prep_obs = _get_or_raise(preprocessors, policy_id).transform(raw_obs) filtered_obs = _get_or_raise(obs_filters, policy_id)(prep_obs) episode._set_last_observation(agent_id, filtered_obs) to_eval[policy_id].append( PolicyEvalData( env_id, agent_id, filtered_obs, episode.last_info_for(agent_id) or {}, episode.rnn_state_for(agent_id), np.zeros_like( flatten_to_single_ndarray( policy.action_space.sample())), 0.0)) return active_envs, to_eval, outputs def _do_policy_eval(tf_sess, to_eval, policies, active_episodes): """Call compute actions on observation batches to get next actions. Returns: eval_results: dict of policy to compute_action() outputs. """ eval_results = {} if tf_sess: builder = TFRunBuilder(tf_sess, "policy_eval") pending_fetches = {} else: builder = None if log_once("compute_actions_input"): logger.info("Inputs to compute_actions():\n\n{}\n".format( summarize(to_eval))) for policy_id, eval_data in to_eval.items(): rnn_in = [t.rnn_state for t in eval_data] policy = _get_or_raise(policies, policy_id) if builder and (policy.compute_actions.__code__ is TFPolicy.compute_actions.__code__): obs_batch = [t.obs for t in eval_data] state_batches = _to_column_format(rnn_in) # TODO(ekl): how can we make info batch available to TF code? prev_action_batch = [t.prev_action for t in eval_data] prev_reward_batch = [t.prev_reward for t in eval_data] pending_fetches[policy_id] = policy._build_compute_actions( builder, obs_batch=obs_batch, state_batches=state_batches, prev_action_batch=prev_action_batch, prev_reward_batch=prev_reward_batch, timestep=policy.global_timestep) else: # TODO(sven): Does this work for LSTM torch? rnn_in_cols = [ np.stack([row[i] for row in rnn_in]) for i in range(len(rnn_in[0])) ] eval_results[policy_id] = policy.compute_actions( [t.obs for t in eval_data], state_batches=rnn_in_cols, prev_action_batch=[t.prev_action for t in eval_data], prev_reward_batch=[t.prev_reward for t in eval_data], info_batch=[t.info for t in eval_data], episodes=[active_episodes[t.env_id] for t in eval_data], timestep=policy.global_timestep) if builder: for pid, v in pending_fetches.items(): eval_results[pid] = builder.get(v) if log_once("compute_actions_result"): logger.info("Outputs of compute_actions():\n\n{}\n".format( summarize(eval_results))) return eval_results def _process_policy_eval_results(to_eval, eval_results, active_episodes, active_envs, off_policy_actions, policies, clip_actions): """Process the output of policy neural network evaluation. Records policy evaluation results into the given episode objects and returns replies to send back to agents in the env. Returns: actions_to_send: nested dict of env id -> agent id -> agent replies. """ actions_to_send = defaultdict(dict) for env_id in active_envs: actions_to_send[env_id] = {} # at minimum send empty dict for policy_id, eval_data in to_eval.items(): rnn_in_cols = _to_column_format([t.rnn_state for t in eval_data]) actions = eval_results[policy_id][0] rnn_out_cols = eval_results[policy_id][1] pi_info_cols = eval_results[policy_id][2] # In case actions is a list (representing the 0th dim of a batch of # primitive actions), try to convert it first. if isinstance(actions, list): actions = np.array(actions) if len(rnn_in_cols) != len(rnn_out_cols): raise ValueError("Length of RNN in did not match RNN out, got: " "{} vs {}".format(rnn_in_cols, rnn_out_cols)) # Add RNN state info for f_i, column in enumerate(rnn_in_cols): pi_info_cols["state_in_{}".format(f_i)] = column for f_i, column in enumerate(rnn_out_cols): pi_info_cols["state_out_{}".format(f_i)] = column policy = _get_or_raise(policies, policy_id) # Clip if necessary (while action components are still batched). if clip_actions: actions = clip_action(actions, policy.action_space_struct) # Split action-component batches into single action rows. actions = unbatch_actions(actions) for i, action in enumerate(actions): env_id = eval_data[i].env_id agent_id = eval_data[i].agent_id actions_to_send[env_id][agent_id] = action episode = active_episodes[env_id] episode._set_rnn_state(agent_id, [c[i] for c in rnn_out_cols]) episode._set_last_pi_info( agent_id, {k: v[i] for k, v in pi_info_cols.items()}) if env_id in off_policy_actions and \ agent_id in off_policy_actions[env_id]: episode._set_last_action(agent_id, off_policy_actions[env_id][agent_id]) else: episode._set_last_action(agent_id, action) return actions_to_send def _fetch_atari_metrics(base_env): """Atari games have multiple logical episodes, one per life. However for metrics reporting we count full episodes all lives included. """ unwrapped = base_env.get_unwrapped() if not unwrapped: return None atari_out = [] for u in unwrapped: monitor = get_wrapper_by_cls(u, MonitorEnv) if not monitor: return None for eps_rew, eps_len in monitor.next_episode_results(): atari_out.append(RolloutMetrics(eps_len, eps_rew)) return atari_out def unbatch_actions(action_batches): """Converts action_batches from list of batches to batch of lists. Input: Struct of batches: {"a": [1, 2, 3], "b": ([4, 5, 6], [7.0, 8.0, 9.0])} Output: Batch (list) of structs (each of these structs representing a single action): [ {"a": 1, "b": (4, 7.0)}, <- action 1 {"a": 2, "b": (5, 8.0)}, <- action 2 {"a": 3, "b": (6, 9.0)}, <- action 3 ] Args: action_batches (any): The list of action-component batches. Each item in this list represents the batch for a single action component (in case action is Tuple/Dict), meaning the list is already flattened. Alternatively, `action_batches` may also simply be a batch of primitive actions (non Tuple/Dict). Returns: List[List[action-components]]: The list of action rows. Each item in the returned list represents a single (maybe complex) action. """ flat_action_batches = tree.flatten(action_batches) out = [] for batch_pos in range(len(flat_action_batches[0])): out.append( tree.unflatten_as(action_batches, [ flat_action_batches[i][batch_pos] for i in range(len(flat_action_batches)) ])) return out def _to_column_format(rnn_state_rows): num_cols = len(rnn_state_rows[0]) return [[row[i] for row in rnn_state_rows] for i in range(num_cols)] def _get_or_raise(mapping, policy_id): """Returns a Policy object under key `policy_id` in `mapping`. Throws an error if `policy_id` cannot be found. Returns: Policy: The found Policy object. """ if policy_id not in mapping: raise ValueError( "Could not find policy for agent: agent policy id `{}` not " "in policy map keys {}.".format(policy_id, mapping.keys())) return mapping[policy_id]