# This code is copied and adapted from Andrej Karpathy's code for learning to # play Pong https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5. import ray import numpy as np import gym env = gym.make("Pong-v0") D = 80 * 80 gamma = 0.99 # discount factor for reward def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1] def preprocess(I): """preprocess 210x160x3 uint8 frame into 6400 (80x80) 1D float vector""" I = I[35:195] # crop I = I[::2,::2,0] # downsample by factor of 2 I[I == 144] = 0 # erase background (background type 1) I[I == 109] = 0 # erase background (background type 2) I[I != 0] = 1 # everything else (paddles, ball) just set to 1 return I.astype(np.float).ravel() def discount_rewards(r): """take 1D float array of rewards and compute discounted reward""" discounted_r = np.zeros_like(r) running_add = 0 for t in reversed(xrange(0, r.size)): if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!) running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r def policy_forward(x, model): h = np.dot(model["W1"], x) h[h < 0] = 0 # ReLU nonlinearity logp = np.dot(model["W2"], h) p = sigmoid(logp) return p, h # return probability of taking action 2, and hidden state def policy_backward(eph, epx, epdlogp, model): """backward pass. (eph is array of intermediate hidden states)""" dW2 = np.dot(eph.T, epdlogp).ravel() dh = np.outer(epdlogp, model["W2"]) dh[eph <= 0] = 0 # backpro prelu dW1 = np.dot(dh.T, epx) return {"W1": dW1, "W2": dW2} @ray.remote([dict], [tuple]) def compgrad(model): observation = env.reset() prev_x = None # used in computing the difference frame xs, hs, dlogps, drs = [], [], [], [] reward_sum = 0 done = False while not done: cur_x = preprocess(observation) x = cur_x - prev_x if prev_x is not None else np.zeros(D) prev_x = cur_x aprob, h = policy_forward(x,model) action = 2 if np.random.uniform() < aprob else 3 # roll the dice! xs.append(x) # observation hs.append(h) # hidden state y = 1 if action == 2 else 0 # a "fake label" dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused) observation, reward, done, info = env.step(action) reward_sum += reward drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action) epx = np.vstack(xs) eph = np.vstack(hs) epdlogp = np.vstack(dlogps) epr = np.vstack(drs) xs, hs, dlogps, drs = [], [], [], [] # reset array memory # compute the discounted reward backwards through time discounted_epr = discount_rewards(epr) # standardize the rewards to be unit normal (helps control the gradient estimator variance) discounted_epr -= np.mean(discounted_epr) discounted_epr /= np.std(discounted_epr) epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.) return (policy_backward(eph, epx, epdlogp, model), reward_sum)