import argparse import os from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument("--torch", action="store_true") parser.add_argument("--as-test", action="store_true") parser.add_argument("--use-prev-action-reward", action="store_true") parser.add_argument("--stop-iters", type=int, default=200) parser.add_argument("--stop-timesteps", type=int, default=100000) parser.add_argument("--stop-reward", type=float, default=150.0) if __name__ == "__main__": import ray from ray import tune args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) configs = { "PPO": { "num_sgd_iter": 5, "vf_share_layers": True, "vf_loss_coeff": 0.0001, }, "IMPALA": { "num_workers": 2, "num_gpus": 0, "vf_loss_coeff": 0.01, }, } config = dict( configs[args.run], **{ "env": StatelessCartPole, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "model": { "use_lstm": True, "lstm_use_prev_action_reward": args.use_prev_action_reward, }, "framework": "torch" if args.torch else "tf", }) stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()