import logging from ray.rllib.agents.trainer import with_common_config from ray.rllib.agents.dqn.simple_q_tf_policy import SimpleQTFPolicy from ray.rllib.agents.dqn.dqn import DQNTrainer from ray.rllib.execution.concurrency_ops import Concurrently from ray.rllib.execution.replay_ops import StoreToReplayBuffer, Replay from ray.rllib.execution.rollout_ops import ParallelRollouts from ray.rllib.execution.train_ops import TrainOneStep, UpdateTargetNetwork from ray.rllib.execution.metric_ops import StandardMetricsReporting from ray.rllib.execution.replay_buffer import LocalReplayBuffer logger = logging.getLogger(__name__) # yapf: disable # __sphinx_doc_begin__ DEFAULT_CONFIG = with_common_config({ # === Exploration Settings (Experimental) === "exploration_config": { # The Exploration class to use. "type": "EpsilonGreedy", # Config for the Exploration class' constructor: "initial_epsilon": 1.0, "final_epsilon": 0.02, "epsilon_timesteps": 10000, # Timesteps over which to anneal epsilon. # For soft_q, use: # "exploration_config" = { # "type": "SoftQ" # "temperature": [float, e.g. 1.0] # } }, # Switch to greedy actions in evaluation workers. "evaluation_config": { "explore": False, }, # Minimum env steps to optimize for per train call. This value does # not affect learning, only the length of iterations. "timesteps_per_iteration": 1000, # Update the target network every `target_network_update_freq` steps. "target_network_update_freq": 500, # === Replay buffer === # Size of the replay buffer. Note that if async_updates is set, then # each worker will have a replay buffer of this size. "buffer_size": 50000, # Whether to LZ4 compress observations "compress_observations": True, # === Optimization === # Learning rate for adam optimizer "lr": 5e-4, # Learning rate schedule "lr_schedule": None, # Adam epsilon hyper parameter "adam_epsilon": 1e-8, # If not None, clip gradients during optimization at this value "grad_clip": 40, # How many steps of the model to sample before learning starts. "learning_starts": 1000, # Update the replay buffer with this many samples at once. Note that # this setting applies per-worker if num_workers > 1. "rollout_fragment_length": 4, # Size of a batch sampled from replay buffer for training. Note that # if async_updates is set, then each worker returns gradients for a # batch of this size. "train_batch_size": 32, # === Parallelism === # Number of workers for collecting samples with. This only makes sense # to increase if your environment is particularly slow to sample, or if # you"re using the Async or Ape-X optimizers. "num_workers": 0, # Prevent iterations from going lower than this time span "min_iter_time_s": 1, }) # __sphinx_doc_end__ # yapf: enable def get_policy_class(config): if config["framework"] == "torch": from ray.rllib.agents.dqn.simple_q_torch_policy import \ SimpleQTorchPolicy return SimpleQTorchPolicy else: return SimpleQTFPolicy def execution_plan(workers, config): local_replay_buffer = LocalReplayBuffer( num_shards=1, learning_starts=config["learning_starts"], buffer_size=config["buffer_size"], replay_batch_size=config["train_batch_size"], replay_mode=config["multiagent"]["replay_mode"], replay_sequence_length=config["replay_sequence_length"]) rollouts = ParallelRollouts(workers, mode="bulk_sync") # (1) Generate rollouts and store them in our local replay buffer. store_op = rollouts.for_each( StoreToReplayBuffer(local_buffer=local_replay_buffer)) # (2) Read and train on experiences from the replay buffer. replay_op = Replay(local_buffer=local_replay_buffer) \ .for_each(TrainOneStep(workers)) \ .for_each(UpdateTargetNetwork( workers, config["target_network_update_freq"])) # Alternate deterministically between (1) and (2). train_op = Concurrently( [store_op, replay_op], mode="round_robin", output_indexes=[1]) return StandardMetricsReporting(train_op, workers, config) SimpleQTrainer = DQNTrainer.with_updates( default_policy=SimpleQTFPolicy, get_policy_class=get_policy_class, execution_plan=execution_plan, default_config=DEFAULT_CONFIG)