""" PyTorch policy class used for PG. """ from typing import Dict, List, Type, Union import ray from ray.rllib.agents.pg.utils import post_process_advantages from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.policy import Policy from ray.rllib.policy.policy_template import build_policy_class from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.typing import TensorType torch, _ = try_import_torch() def pg_torch_loss( policy: Policy, model: ModelV2, dist_class: Type[TorchDistributionWrapper], train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]: """The basic policy gradients loss function. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]: The action distr. class. train_batch (SampleBatch): The training data. Returns: Union[TensorType, List[TensorType]]: A single loss tensor or a list of loss tensors. """ # Pass the training data through our model to get distribution parameters. dist_inputs, _ = model.from_batch(train_batch) # Create an action distribution object. action_dist = dist_class(dist_inputs, model) # Calculate the vanilla PG loss based on: # L = -E[ log(pi(a|s)) * A] log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS]) # Save the loss in the policy object for the stats_fn below. policy.pi_err = -torch.mean( log_probs * train_batch[Postprocessing.ADVANTAGES]) return policy.pi_err def pg_loss_stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]: """Returns the calculated loss in a stats dict. Args: policy (Policy): The Policy object. train_batch (SampleBatch): The data used for training. Returns: Dict[str, TensorType]: The stats dict. """ return { # `pi_err` (the loss) is stored inside `pg_torch_loss()`. "policy_loss": policy.pi_err.item(), } # Build a child class of `TFPolicy`, given the extra options: # - trajectory post-processing function (to calculate advantages) # - PG loss function PGTorchPolicy = build_policy_class( name="PGTorchPolicy", framework="torch", get_default_config=lambda: ray.rllib.agents.pg.pg.DEFAULT_CONFIG, loss_fn=pg_torch_loss, stats_fn=pg_loss_stats, postprocess_fn=post_process_advantages, )