from http.server import HTTPServer, SimpleHTTPRequestHandler import logging import queue from socketserver import ThreadingMixIn import threading import time import traceback import ray.cloudpickle as pickle from ray.rllib.env.policy_client import PolicyClient, _create_embedded_rollout_worker from ray.rllib.offline.input_reader import InputReader from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.annotations import override, PublicAPI logger = logging.getLogger(__name__) class PolicyServerInput(ThreadingMixIn, HTTPServer, InputReader): """REST policy server that acts as an offline data source. This launches a multi-threaded server that listens on the specified host and port to serve policy requests and forward experiences to RLlib. For high performance experience collection, it implements InputReader. For an example, run `examples/serving/cartpole_server.py` along with `examples/serving/cartpole_client.py --inference-mode=local|remote`. Examples: >>> import gym >>> from ray.rllib.agents.pg import PGTrainer >>> from ray.rllib.env.policy_client import PolicyClient >>> from ray.rllib.env.policy_server_input import PolicyServerInput >>> addr, port = ... # doctest: +SKIP >>> pg = PGTrainer( # doctest: +SKIP ... env="CartPole-v0", config={ # doctest: +SKIP ... "input": lambda io_ctx: # doctest: +SKIP ... PolicyServerInput(io_ctx, addr, port), # doctest: +SKIP ... # Run just 1 server, in the trainer. ... "num_workers": 0, # doctest: +SKIP ... } # doctest: +SKIP >>> while True: # doctest: +SKIP >>> pg.train() # doctest: +SKIP >>> client = PolicyClient( # doctest: +SKIP ... "localhost:9900", inference_mode="local") >>> eps_id = client.start_episode() # doctest: +SKIP >>> env = gym.make("CartPole-v0") >>> obs = env.reset() >>> action = client.get_action(eps_id, obs) # doctest: +SKIP >>> reward = env.step(action)[0] # doctest: +SKIP >>> client.log_returns(eps_id, reward) # doctest: +SKIP >>> client.log_returns(eps_id, reward) # doctest: +SKIP """ @PublicAPI def __init__(self, ioctx, address, port, idle_timeout=3.0): """Create a PolicyServerInput. This class implements rllib.offline.InputReader, and can be used with any Trainer by configuring {"num_workers": 0, "input": lambda ioctx: PolicyServerInput(ioctx, addr, port)} Note that by setting num_workers: 0, the trainer will only create one rollout worker / PolicyServerInput. Clients can connect to the launched server using rllib.env.PolicyClient. Args: ioctx (IOContext): IOContext provided by RLlib. address (str): Server addr (e.g., "localhost"). port (int): Server port (e.g., 9900). """ self.rollout_worker = ioctx.worker self.samples_queue = queue.Queue() self.metrics_queue = queue.Queue() self.idle_timeout = idle_timeout def get_metrics(): completed = [] while True: try: completed.append(self.metrics_queue.get_nowait()) except queue.Empty: break return completed # Forwards client-reported rewards directly into the local rollout # worker. This is a bit of a hack since it is patching the get_metrics # function of the sampler. if self.rollout_worker.sampler is not None: self.rollout_worker.sampler.get_metrics = get_metrics # Create a request handler that receives commands from the clients # and sends data and metrics into the queues. handler = _make_handler( self.rollout_worker, self.samples_queue, self.metrics_queue ) try: import time time.sleep(1) HTTPServer.__init__(self, (address, port), handler) except OSError: print(f"Creating a PolicyServer on {address}:{port} failed!") import time time.sleep(1) raise logger.info( "Starting connector server at " f"{self.server_name}:{self.server_port}" ) # Start the serving thread, listening on socket and handling commands. serving_thread = threading.Thread(name="server", target=self.serve_forever) serving_thread.daemon = True serving_thread.start() # Start a dummy thread that puts empty SampleBatches on the queue, just # in case we don't receive anything from clients (or there aren't # any). The latter would block sample collection entirely otherwise, # even if other workers' PolicyServerInput receive incoming data from # actual clients. heart_beat_thread = threading.Thread( name="heart-beat", target=self._put_empty_sample_batch_every_n_sec ) heart_beat_thread.daemon = True heart_beat_thread.start() @override(InputReader) def next(self): return self.samples_queue.get() def _put_empty_sample_batch_every_n_sec(self): # Places an empty SampleBatch every `idle_timeout` seconds onto the # `samples_queue`. This avoids hanging of all RolloutWorkers parallel # to this one in case this PolicyServerInput does not have incoming # data (e.g. no client connected). while True: time.sleep(self.idle_timeout) self.samples_queue.put(SampleBatch()) def _make_handler(rollout_worker, samples_queue, metrics_queue): # Only used in remote inference mode. We must create a new rollout worker # then since the original worker doesn't have the env properly wrapped in # an ExternalEnv interface. child_rollout_worker = None inference_thread = None lock = threading.Lock() def setup_child_rollout_worker(): nonlocal lock nonlocal child_rollout_worker nonlocal inference_thread with lock: if child_rollout_worker is None: ( child_rollout_worker, inference_thread, ) = _create_embedded_rollout_worker( rollout_worker.creation_args(), report_data ) child_rollout_worker.set_weights(rollout_worker.get_weights()) def report_data(data): nonlocal child_rollout_worker batch = data["samples"] batch.decompress_if_needed() samples_queue.put(batch) for rollout_metric in data["metrics"]: metrics_queue.put(rollout_metric) if child_rollout_worker is not None: child_rollout_worker.set_weights( rollout_worker.get_weights(), rollout_worker.get_global_vars() ) class Handler(SimpleHTTPRequestHandler): def __init__(self, *a, **kw): super().__init__(*a, **kw) def do_POST(self): content_len = int(self.headers.get("Content-Length"), 0) raw_body = self.rfile.read(content_len) parsed_input = pickle.loads(raw_body) try: response = self.execute_command(parsed_input) self.send_response(200) self.end_headers() self.wfile.write(pickle.dumps(response)) except Exception: self.send_error(500, traceback.format_exc()) def execute_command(self, args): command = args["command"] response = {} # Local inference commands: if command == PolicyClient.GET_WORKER_ARGS: logger.info("Sending worker creation args to client.") response["worker_args"] = rollout_worker.creation_args() elif command == PolicyClient.GET_WEIGHTS: logger.info("Sending worker weights to client.") response["weights"] = rollout_worker.get_weights() response["global_vars"] = rollout_worker.get_global_vars() elif command == PolicyClient.REPORT_SAMPLES: logger.info( "Got sample batch of size {} from client.".format( args["samples"].count ) ) report_data(args) # Remote inference commands: elif command == PolicyClient.START_EPISODE: setup_child_rollout_worker() assert inference_thread.is_alive() response["episode_id"] = child_rollout_worker.env.start_episode( args["episode_id"], args["training_enabled"] ) elif command == PolicyClient.GET_ACTION: assert inference_thread.is_alive() response["action"] = child_rollout_worker.env.get_action( args["episode_id"], args["observation"] ) elif command == PolicyClient.LOG_ACTION: assert inference_thread.is_alive() child_rollout_worker.env.log_action( args["episode_id"], args["observation"], args["action"] ) elif command == PolicyClient.LOG_RETURNS: assert inference_thread.is_alive() if args["done"]: child_rollout_worker.env.log_returns( args["episode_id"], args["reward"], args["info"], args["done"] ) else: child_rollout_worker.env.log_returns( args["episode_id"], args["reward"], args["info"] ) elif command == PolicyClient.END_EPISODE: assert inference_thread.is_alive() child_rollout_worker.env.end_episode( args["episode_id"], args["observation"] ) else: raise ValueError("Unknown command: {}".format(command)) return response return Handler