"""Example of using a custom model with batch norm.""" import argparse import ray from ray import tune from ray.rllib.examples.models.batch_norm_model import BatchNormModel, \ TorchBatchNormModel from ray.rllib.models import ModelCatalog from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--as-test", action="store_true") parser.add_argument("--torch", action="store_true") parser.add_argument("--stop-iters", type=int, default=200) parser.add_argument("--stop-timesteps", type=int, default=100000) parser.add_argument("--stop-reward", type=float, default=150) if __name__ == "__main__": args = parser.parse_args() ray.init(local_mode=True) ModelCatalog.register_custom_model( "bn_model", TorchBatchNormModel if args.torch else BatchNormModel) config = { "env": "Pendulum-v0" if args.run == "DDPG" else "CartPole-v0", "model": { "custom_model": "bn_model", }, "num_workers": 0, "framework": "torch" if args.torch else "tf", } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, stop=stop, config=config) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()