import gym import numpy as np import pickle import unittest import ray from ray.rllib.agents.ppo import PPOTrainer from ray.rllib.policy.rnn_sequencing import chop_into_sequences, \ add_time_dimension from ray.rllib.models import ModelCatalog from ray.rllib.models.tf.misc import linear, normc_initializer from ray.rllib.models.model import Model from ray.tune.registry import register_env from ray.rllib.utils import try_import_tf tf = try_import_tf() class TestLSTMUtils(unittest.TestCase): def test_basic(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] agent_ids = [1, 1, 1, 1, 1, 1, 1, 1] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] f_pad, s_init, seq_lens = chop_into_sequences(eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4) self.assertEqual([f.tolist() for f in f_pad], [ [101, 102, 103, 0, 201, 202, 203, 204, 205, 0, 0, 0], [[101], [102], [103], [0], [201], [202], [203], [204], [205], [0], [0], [0]], ]) self.assertEqual([s.tolist() for s in s_init], [[209, 109, 105]]) self.assertEqual(seq_lens.tolist(), [3, 4, 1]) def test_multi_dim(self): eps_ids = [1, 1, 1] agent_ids = [1, 1, 1] obs = np.ones((84, 84, 4)) f = [[obs, obs * 2, obs * 3]] s = [[209, 208, 207]] f_pad, s_init, seq_lens = chop_into_sequences(eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4) self.assertEqual([f.tolist() for f in f_pad], [ np.array([obs, obs * 2, obs * 3]).tolist(), ]) self.assertEqual([s.tolist() for s in s_init], [[209]]) self.assertEqual(seq_lens.tolist(), [3]) def test_batch_id(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] batch_ids = [1, 1, 2, 2, 3, 3, 4, 4] agent_ids = [1, 1, 1, 1, 1, 1, 1, 1] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] _, _, seq_lens = chop_into_sequences(eps_ids, batch_ids, agent_ids, f, s, 4) self.assertEqual(seq_lens.tolist(), [2, 1, 1, 2, 2]) def test_multi_agent(self): eps_ids = [1, 1, 1, 5, 5, 5, 5, 5] agent_ids = [1, 1, 2, 1, 1, 2, 2, 3] f = [[101, 102, 103, 201, 202, 203, 204, 205], [[101], [102], [103], [201], [202], [203], [204], [205]]] s = [[209, 208, 207, 109, 108, 107, 106, 105]] f_pad, s_init, seq_lens = chop_into_sequences( eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4, dynamic_max=False) self.assertEqual(seq_lens.tolist(), [2, 1, 2, 2, 1]) self.assertEqual(len(f_pad[0]), 20) self.assertEqual(len(s_init[0]), 5) def test_dynamic_max_len(self): eps_ids = [5, 2, 2] agent_ids = [2, 2, 2] f = [[1, 1, 1]] s = [[1, 1, 1]] f_pad, s_init, seq_lens = chop_into_sequences(eps_ids, np.ones_like(eps_ids), agent_ids, f, s, 4) self.assertEqual([f.tolist() for f in f_pad], [[1, 0, 1, 1]]) self.assertEqual([s.tolist() for s in s_init], [[1, 1]]) self.assertEqual(seq_lens.tolist(), [1, 2]) class RNNSpyModel(Model): capture_index = 0 def _build_layers_v2(self, input_dict, num_outputs, options): # Previously, a new class object was created during # deserialization and this `capture_index` # variable would be refreshed between class instantiations. # This behavior is no longer the case, so we manually refresh # the variable. RNNSpyModel.capture_index = 0 def spy(sequences, state_in, state_out, seq_lens): if len(sequences) == 1: return 0 # don't capture inference inputs # TF runs this function in an isolated context, so we have to use # redis to communicate back to our suite ray.experimental.internal_kv._internal_kv_put( "rnn_spy_in_{}".format(RNNSpyModel.capture_index), pickle.dumps({ "sequences": sequences, "state_in": state_in, "state_out": state_out, "seq_lens": seq_lens }), overwrite=True) RNNSpyModel.capture_index += 1 return 0 features = input_dict["obs"] cell_size = 3 last_layer = add_time_dimension(features, self.seq_lens) # Setup the LSTM cell lstm = tf.nn.rnn_cell.BasicLSTMCell(cell_size, state_is_tuple=True) self.state_init = [ np.zeros(lstm.state_size.c, np.float32), np.zeros(lstm.state_size.h, np.float32) ] # Setup LSTM inputs if self.state_in: c_in, h_in = self.state_in else: c_in = tf.placeholder( tf.float32, [None, lstm.state_size.c], name="c") h_in = tf.placeholder( tf.float32, [None, lstm.state_size.h], name="h") self.state_in = [c_in, h_in] # Setup LSTM outputs state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in) lstm_out, lstm_state = tf.nn.dynamic_rnn( lstm, last_layer, initial_state=state_in, sequence_length=self.seq_lens, time_major=False, dtype=tf.float32) self.state_out = list(lstm_state) spy_fn = tf.py_func( spy, [ last_layer, self.state_in, self.state_out, self.seq_lens, ], tf.int64, stateful=True) # Compute outputs with tf.control_dependencies([spy_fn]): last_layer = tf.reshape(lstm_out, [-1, cell_size]) logits = linear(last_layer, num_outputs, "action", normc_initializer(0.01)) return logits, last_layer class DebugCounterEnv(gym.Env): def __init__(self): self.action_space = gym.spaces.Discrete(2) self.observation_space = gym.spaces.Box(0, 100, (1, )) self.i = 0 def reset(self): self.i = 0 return [self.i] def step(self, action): self.i += 1 return [self.i], self.i % 3, self.i >= 15, {} class TestRNNSequencing(unittest.TestCase): def setUp(self) -> None: ray.init(num_cpus=4) def tearDown(self) -> None: ray.shutdown() def test_simple_optimizer_sequencing(self): ModelCatalog.register_custom_model("rnn", RNNSpyModel) register_env("counter", lambda _: DebugCounterEnv()) ppo = PPOTrainer( env="counter", config={ "num_workers": 0, "sample_batch_size": 10, "train_batch_size": 10, "sgd_minibatch_size": 10, "vf_share_layers": True, "simple_optimizer": True, "num_sgd_iter": 1, "model": { "custom_model": "rnn", "max_seq_len": 4, "state_shape": [3, 3], }, }) ppo.train() ppo.train() batch0 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_0")) self.assertEqual( batch0["sequences"].tolist(), [[[0], [1], [2], [3]], [[4], [5], [6], [7]], [[8], [9], [0], [0]]]) self.assertEqual(batch0["seq_lens"].tolist(), [4, 4, 2]) self.assertEqual(batch0["state_in"][0][0].tolist(), [0, 0, 0]) self.assertEqual(batch0["state_in"][1][0].tolist(), [0, 0, 0]) self.assertGreater(abs(np.sum(batch0["state_in"][0][1])), 0) self.assertGreater(abs(np.sum(batch0["state_in"][1][1])), 0) self.assertTrue( np.allclose(batch0["state_in"][0].tolist()[1:], batch0["state_out"][0].tolist()[:-1])) self.assertTrue( np.allclose(batch0["state_in"][1].tolist()[1:], batch0["state_out"][1].tolist()[:-1])) batch1 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_1")) self.assertEqual(batch1["sequences"].tolist(), [ [[10], [11], [12], [13]], [[14], [0], [0], [0]], [[0], [1], [2], [3]], [[4], [0], [0], [0]], ]) self.assertEqual(batch1["seq_lens"].tolist(), [4, 1, 4, 1]) self.assertEqual(batch1["state_in"][0][2].tolist(), [0, 0, 0]) self.assertEqual(batch1["state_in"][1][2].tolist(), [0, 0, 0]) self.assertGreater(abs(np.sum(batch1["state_in"][0][0])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][0])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][0][1])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][1])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][0][3])), 0) self.assertGreater(abs(np.sum(batch1["state_in"][1][3])), 0) def test_minibatch_sequencing(self): ModelCatalog.register_custom_model("rnn", RNNSpyModel) register_env("counter", lambda _: DebugCounterEnv()) ppo = PPOTrainer( env="counter", config={ "shuffle_sequences": False, # for deterministic testing "num_workers": 0, "sample_batch_size": 20, "train_batch_size": 20, "sgd_minibatch_size": 10, "vf_share_layers": True, "simple_optimizer": False, "num_sgd_iter": 1, "model": { "custom_model": "rnn", "max_seq_len": 4, "state_shape": [3, 3], }, }) ppo.train() ppo.train() # first epoch: 20 observations get split into 2 minibatches of 8 # four observations are discarded batch0 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_0")) batch1 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_1")) if batch0["sequences"][0][0][0] > batch1["sequences"][0][0][0]: batch0, batch1 = batch1, batch0 # sort minibatches self.assertEqual(batch0["seq_lens"].tolist(), [4, 4]) self.assertEqual(batch1["seq_lens"].tolist(), [4, 3]) self.assertEqual(batch0["sequences"].tolist(), [ [[0], [1], [2], [3]], [[4], [5], [6], [7]], ]) self.assertEqual(batch1["sequences"].tolist(), [ [[8], [9], [10], [11]], [[12], [13], [14], [0]], ]) # second epoch: 20 observations get split into 2 minibatches of 8 # four observations are discarded batch2 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_2")) batch3 = pickle.loads( ray.experimental.internal_kv._internal_kv_get("rnn_spy_in_3")) if batch2["sequences"][0][0][0] > batch3["sequences"][0][0][0]: batch2, batch3 = batch3, batch2 self.assertEqual(batch2["seq_lens"].tolist(), [4, 4]) self.assertEqual(batch3["seq_lens"].tolist(), [2, 4]) self.assertEqual(batch2["sequences"].tolist(), [ [[5], [6], [7], [8]], [[9], [10], [11], [12]], ]) self.assertEqual(batch3["sequences"].tolist(), [ [[13], [14], [0], [0]], [[0], [1], [2], [3]], ]) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))