import torch import torch.nn as nn import ray from ray import train from ray.air import session, Checkpoint from ray.train.torch import TorchTrainer from ray.air.config import ScalingConfig input_size = 1 layer_size = 15 output_size = 1 num_epochs = 3 class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.layer1 = nn.Linear(input_size, layer_size) self.relu = nn.ReLU() self.layer2 = nn.Linear(layer_size, output_size) def forward(self, input): return self.layer2(self.relu(self.layer1(input))) def train_loop_per_worker(): dataset_shard = session.get_dataset_shard("train") model = NeuralNetwork() loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) model = train.torch.prepare_model(model) for epoch in range(num_epochs): for batches in dataset_shard.iter_torch_batches( batch_size=32, dtypes=torch.float ): inputs, labels = torch.unsqueeze(batches["x"], 1), batches["y"] output = model(inputs) loss = loss_fn(output, labels) optimizer.zero_grad() loss.backward() optimizer.step() print(f"epoch: {epoch}, loss: {loss.item()}") session.report( {}, checkpoint=Checkpoint.from_dict( dict(epoch=epoch, model=model.state_dict()) ), ) train_dataset = ray.data.from_items([{"x": x, "y": 2 * x + 1} for x in range(200)]) scaling_config = ScalingConfig(num_workers=3) # If using GPUs, use the below scaling config instead. # scaling_config = ScalingConfig(num_workers=3, use_gpu=True) trainer = TorchTrainer( train_loop_per_worker=train_loop_per_worker, scaling_config=scaling_config, datasets={"train": train_dataset}, ) result = trainer.fit()