# Code in this file is copied and adapted from # https://github.com/openai/evolution-strategies-starter. import numpy as np class Optimizer: def __init__(self, policy): self.policy = policy self.dim = policy.num_params self.t = 0 def update(self, globalg): self.t += 1 step = self._compute_step(globalg) theta = self.policy.get_flat_weights() ratio = np.linalg.norm(step) / np.linalg.norm(theta) return theta + step, ratio def _compute_step(self, globalg): raise NotImplementedError class SGD(Optimizer): def __init__(self, policy, stepsize, momentum=0.0): Optimizer.__init__(self, policy) self.v = np.zeros(self.dim, dtype=np.float32) self.stepsize, self.momentum = stepsize, momentum def _compute_step(self, globalg): self.v = self.momentum * self.v + (1. - self.momentum) * globalg step = -self.stepsize * self.v return step class Adam(Optimizer): def __init__(self, policy, stepsize, beta1=0.9, beta2=0.999, epsilon=1e-08): Optimizer.__init__(self, policy) self.stepsize = stepsize self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.m = np.zeros(self.dim, dtype=np.float32) self.v = np.zeros(self.dim, dtype=np.float32) def _compute_step(self, globalg): a = self.stepsize * (np.sqrt(1 - self.beta2**self.t) / (1 - self.beta1**self.t)) self.m = self.beta1 * self.m + (1 - self.beta1) * globalg self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg) step = -a * self.m / (np.sqrt(self.v) + self.epsilon) return step