"""Basic example of a DQN policy without any optimizations.""" from gym.spaces import Discrete import logging import ray from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.models import ModelCatalog from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.utils.annotations import override from ray.rllib.utils.error import UnsupportedSpaceException from ray.rllib.policy.tf_policy import TFPolicy from ray.rllib.policy.tf_policy_template import build_tf_policy from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.tf_ops import huber_loss, make_tf_callable tf1, tf, tfv = try_import_tf() logger = logging.getLogger(__name__) Q_SCOPE = "q_func" Q_TARGET_SCOPE = "target_q_func" class TargetNetworkMixin: def __init__(self, obs_space, action_space, config): @make_tf_callable(self.get_session()) def do_update(): # update_target_fn will be called periodically to copy Q network to # target Q network update_target_expr = [] assert len(self.q_func_vars) == len(self.target_q_func_vars), \ (self.q_func_vars, self.target_q_func_vars) for var, var_target in zip(self.q_func_vars, self.target_q_func_vars): update_target_expr.append(var_target.assign(var)) logger.debug("Update target op {}".format(var_target)) return tf.group(*update_target_expr) self.update_target = do_update @override(TFPolicy) def variables(self): return self.q_func_vars + self.target_q_func_vars def build_q_models(policy, obs_space, action_space, config): if not isinstance(action_space, Discrete): raise UnsupportedSpaceException( "Action space {} is not supported for DQN.".format(action_space)) policy.q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=action_space.n, model_config=config["model"], framework=config["framework"], name=Q_SCOPE) policy.target_q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=action_space.n, model_config=config["model"], framework=config["framework"], name=Q_TARGET_SCOPE) policy.q_func_vars = policy.q_model.variables() policy.target_q_func_vars = policy.target_q_model.variables() return policy.q_model def get_distribution_inputs_and_class(policy, q_model, obs_batch, *, explore=True, is_training=True, **kwargs): q_vals = compute_q_values(policy, q_model, obs_batch, explore, is_training) q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals policy.q_values = q_vals return policy.q_values, (TorchCategorical if policy.config["framework"] == "torch" else Categorical), [] # state-outs def build_q_losses(policy, model, dist_class, train_batch): # q network evaluation q_t = compute_q_values( policy, policy.q_model, train_batch[SampleBatch.CUR_OBS], explore=False) # target q network evalution q_tp1 = compute_q_values( policy, policy.target_q_model, train_batch[SampleBatch.NEXT_OBS], explore=False) policy.target_q_func_vars = policy.target_q_model.variables() # q scores for actions which we know were selected in the given state. one_hot_selection = tf.one_hot( tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32), policy.action_space.n) q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1) # compute estimate of best possible value starting from state at t + 1 dones = tf.cast(train_batch[SampleBatch.DONES], tf.float32) q_tp1_best_one_hot_selection = tf.one_hot( tf.argmax(q_tp1, 1), policy.action_space.n) q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1) q_tp1_best_masked = (1.0 - dones) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = (train_batch[SampleBatch.REWARDS] + policy.config["gamma"] * q_tp1_best_masked) # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) loss = tf.reduce_mean(huber_loss(td_error)) # save TD error as an attribute for outside access policy.td_error = td_error return loss def compute_q_values(policy, model, obs, explore, is_training=None): model_out, _ = model({ SampleBatch.CUR_OBS: obs, "is_training": is_training if is_training is not None else policy._get_is_training_placeholder(), }, [], None) return model_out def setup_late_mixins(policy, obs_space, action_space, config): TargetNetworkMixin.__init__(policy, obs_space, action_space, config) SimpleQTFPolicy = build_tf_policy( name="SimpleQTFPolicy", get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG, make_model=build_q_models, action_distribution_fn=get_distribution_inputs_and_class, loss_fn=build_q_losses, extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values}, extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error}, after_init=setup_late_mixins, obs_include_prev_action_reward=False, mixins=[TargetNetworkMixin])