# This file runs RLlib algorithm learning tests for select algorithms on torch. # It is suggested to run these on a single g3.16xlarge or p3.16xl node # in a DLAMI / tensorflow_p36 env. # Note: RL runs are inherently high variance, so you'll have to check to # see if the rewards reached seem reasonably in line with previous results. # You can find the reference results here: # https://github.com/ray-project/ray/tree/master/release/release_logs a2c-torch-atari: env: BreakoutNoFrameskip-v4 run: A2C num_samples: 2 stop: time_total_s: 3600 config: framework: torch rollout_fragment_length: 20 clip_rewards: True num_workers: 5 num_envs_per_worker: 5 num_gpus: 1 lr_schedule: [ [0, 0.0007], [20000000, 0.000000000001], ] apex-dqn-torch-atari: env: BreakoutNoFrameskip-v4 run: APEX num_samples: 2 stop: time_total_s: 3600 config: framework: torch double_q: false dueling: false num_atoms: 1 noisy: false n_step: 3 lr: .0001 adam_epsilon: .00015 hiddens: [512] buffer_size: 1000000 exploration_config: epsilon_timesteps: 200000 final_epsilon: 0.01 prioritized_replay_alpha: 0.5 final_prioritized_replay_beta: 1.0 prioritized_replay_beta_annealing_timesteps: 2000000 num_gpus: 1 num_workers: 8 num_envs_per_worker: 8 rollout_fragment_length: 20 train_batch_size: 512 target_network_update_freq: 50000 timesteps_per_iteration: 25000 dqn-torch-atari: env: BreakoutNoFrameskip-v4 run: DQN num_samples: 2 stop: time_total_s: 3600 config: framework: torch double_q: false dueling: false num_atoms: 1 noisy: false prioritized_replay: false n_step: 1 target_network_update_freq: 8000 lr: .0000625 adam_epsilon: .00015 hiddens: [512] learning_starts: 20000 buffer_size: 1000000 rollout_fragment_length: 4 train_batch_size: 32 exploration_config: epsilon_timesteps: 200000 final_epsilon: 0.01 prioritized_replay_alpha: 0.5 final_prioritized_replay_beta: 1.0 prioritized_replay_beta_annealing_timesteps: 2000000 num_gpus: 0.5 timesteps_per_iteration: 10000 impala-torch-atari: env: BreakoutNoFrameskip-v4 run: IMPALA num_samples: 2 stop: time_total_s: 3600 config: framework: torch rollout_fragment_length: 50 train_batch_size: 500 num_workers: 10 num_envs_per_worker: 5 clip_rewards: True lr_schedule: [ [0, 0.0005], [20000000, 0.000000000001], ] num_gpus: 1 ppo-torch-atari: env: BreakoutNoFrameskip-v4 run: PPO num_samples: 2 stop: time_total_s: 3600 config: framework: torch lambda: 0.95 kl_coeff: 0.5 clip_rewards: True clip_param: 0.1 vf_clip_param: 10.0 entropy_coeff: 0.01 train_batch_size: 5000 rollout_fragment_length: 100 sgd_minibatch_size: 500 num_sgd_iter: 10 num_workers: 10 num_envs_per_worker: 5 batch_mode: truncate_episodes observation_filter: NoFilter model: vf_share_layers: true num_gpus: 1 # Expect roughly 1000 reward after 1h on 1GPU sac-torch-halfcheetah-pybullet: env: HalfCheetahBulletEnv-v0 run: SAC num_samples: 2 stop: time_total_s: 3600 config: framework: torch horizon: 1000 soft_horizon: false Q_model: fcnet_activation: relu fcnet_hiddens: [256, 256] policy_model: fcnet_activation: relu fcnet_hiddens: [256, 256] tau: 0.005 target_entropy: auto no_done_at_end: true n_step: 1 rollout_fragment_length: 1 prioritized_replay: true train_batch_size: 256 target_network_update_freq: 1 timesteps_per_iteration: 1000 learning_starts: 10000 optimization: actor_learning_rate: 0.0003 critic_learning_rate: 0.0003 entropy_learning_rate: 0.0003 num_workers: 0 num_gpus: 1 clip_actions: false normalize_actions: true evaluation_interval: 1 metrics_smoothing_episodes: 5