import argparse from gym.spaces import Dict, Tuple, Box, Discrete import os import ray import ray.tune as tune from ray.tune.registry import register_env from ray.rllib.examples.env.nested_space_repeat_after_me_env import \ NestedSpaceRepeatAfterMeEnv from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--torch", action="store_true") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-reward", type=float, default=0.0) parser.add_argument("--stop-iters", type=int, default=100) parser.add_argument("--stop-timesteps", type=int, default=100000) parser.add_argument("--num-cpus", type=int, default=0) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) register_env("NestedSpaceRepeatAfterMeEnv", lambda c: NestedSpaceRepeatAfterMeEnv(c)) config = { "env": "NestedSpaceRepeatAfterMeEnv", "env_config": { "space": Dict({ "a": Tuple( [Dict({ "d": Box(-10.0, 10.0, ()), "e": Discrete(2) })]), "b": Box(-10.0, 10.0, (2, )), "c": Discrete(4) }), }, "entropy_coeff": 0.00005, # We don't want high entropy in this Env. "gamma": 0.0, # No history in Env (bandit problem). "lr": 0.0005, "num_envs_per_worker": 20, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_sgd_iter": 4, "num_workers": 0, "vf_loss_coeff": 0.01, "framework": "torch" if args.torch else "tf", } stop = { "training_iteration": args.stop_iters, "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, } results = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()