long-term-satisfaction-recsim-env-slateq: env: ray.rllib.examples.env.recommender_system_envs_with_recsim.LongTermSatisfactionRecSimEnv run: SlateQ stop: # Random baseline rewards: # num_candidates=20; slate_size=2; resample=true: ~951 # num_candidates=50; slate_size=3; resample=true: ~946 evaluation/episode_reward_mean: 1000.0 timesteps_total: 200000 config: # Works for both tf and torch. framework: tf metrics_num_episodes_for_smoothing: 200 # RLlib/RecSim wrapper specific settings: env_config: config: # Each step, sample `num_candidates` documents using the env-internal # document sampler model (a logic that creates n documents to select # the slate from). resample_documents: true num_candidates: 50 # How many documents to recommend (out of `num_candidates`) each # timestep? slate_size: 2 # Should the action space be purely Discrete? Useful for algos that # don't support MultiDiscrete (e.g. DQN or Bandits). # SlateQ handles MultiDiscrete action spaces. convert_to_discrete_action_space: false seed: 42 exploration_config: warmup_timesteps: 10000 epsilon_timesteps: 60000 target_network_update_freq: 3200