.. _datasets_getting_started: ================================= Getting Started with Ray Datasets ================================= In this tutorial you will learn how to: - Create and save a Ray ``Dataset``. - How to transform a ``Dataset`` and pass it into other Ray Tasks. - How to create a Ray ``DatasetPipeline`` and run transformations on it. .. _ray_datasets_quick_start: ------------------- Dataset Quick Start ------------------- Ray Datasets implements `Distributed Arrow `__. A Dataset consists of a list of Ray object references to *blocks*. Each block holds a set of items in either an `Arrow table `__ or a Python list (for Arrow incompatible objects). Let's start by creating a Dataset. Creating Datasets ================= .. tip:: Run ``pip install "ray[data]"`` to get started! You can get started by creating Datasets from synthetic data using ``ray.data.range()`` and ``ray.data.from_items()``. Datasets can hold either plain Python objects (i.e. their schema is a Python type), or Arrow records (in which case their schema is Arrow). .. code-block:: python import ray # Create a Dataset of Python objects. ds = ray.data.range(10000) # -> Dataset(num_blocks=200, num_rows=10000, schema=) ds.take(5) # -> [0, 1, 2, 3, 4] ds.count() # -> 10000 # Create a Dataset of Arrow records. ds = ray.data.from_items([{"col1": i, "col2": str(i)} for i in range(10000)]) # -> Dataset(num_blocks=200, num_rows=10000, schema={col1: int64, col2: string}) ds.show(5) # -> {'col1': 0, 'col2': '0'} # -> {'col1': 1, 'col2': '1'} # -> {'col1': 2, 'col2': '2'} # -> {'col1': 3, 'col2': '3'} # -> {'col1': 4, 'col2': '4'} ds.schema() # -> col1: int64 # -> col2: string Datasets can be created from files on local disk or remote datasources such as S3. Any filesystem `supported by pyarrow `__ can be used to specify file locations: .. code-block:: python # Read a directory of files in remote storage. ds = ray.data.read_csv("s3://bucket/path") # Read multiple local files. ds = ray.data.read_csv(["/path/to/file1", "/path/to/file2"]) # Read multiple directories. ds = ray.data.read_csv(["s3://bucket/path1", "s3://bucket/path2"]) Finally, you can create a ``Dataset`` from existing data in the Ray object store or Ray-compatible distributed DataFrames: .. code-block:: python import pandas as pd import dask.dataframe as dd # Create a Dataset from a list of Pandas DataFrame objects. pdf = pd.DataFrame({"one": [1, 2, 3], "two": ["a", "b", "c"]}) ds = ray.data.from_pandas([pdf]) # Create a Dataset from a Dask-on-Ray DataFrame. dask_df = dd.from_pandas(pdf, npartitions=10) ds = ray.data.from_dask(dask_df) Saving Datasets =============== Datasets can be written to local or remote storage using ``.write_csv()``, ``.write_json()``, and ``.write_parquet()``. .. code-block:: python # Write to csv files in /tmp/output. ray.data.range(10000).write_csv("/tmp/output") # -> /tmp/output/data0.csv, /tmp/output/data1.csv, ... # Use repartition to control the number of output files: ray.data.range(10000).repartition(1).write_csv("/tmp/output2") # -> /tmp/output2/data0.csv You can also convert a ``Dataset`` to Ray-compatible distributed DataFrames: .. code-block:: python # Convert a Ray Dataset into a Dask-on-Ray DataFrame. dask_df = ds.to_dask() Transforming Datasets ===================== Datasets can be transformed in parallel using ``.map()``. Transformations are executed *eagerly* and block until the operation is finished. Datasets also supports ``.filter()`` and ``.flat_map()``. .. code-block:: python ds = ray.data.range(10000) ds = ds.map(lambda x: x * 2) # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1123.54it/s] # -> Dataset(num_blocks=200, num_rows=10000, schema=) ds.take(5) # -> [0, 2, 4, 6, 8] ds.filter(lambda x: x > 5).take(5) # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1859.63it/s] # -> [6, 8, 10, 12, 14] ds.flat_map(lambda x: [x, -x]).take(5) # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1568.10it/s] # -> [0, 0, 2, -2, 4] To take advantage of vectorized functions, use ``.map_batches()``. Note that you can also implement ``filter`` and ``flat_map`` using ``.map_batches()``, since your map function can return an output batch of any size. .. code-block:: python ds = ray.data.range_arrow(10000) ds = ds.map_batches( lambda df: df.applymap(lambda x: x * 2), batch_format="pandas") # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1927.62it/s] ds.take(5) # -> [{'value': 0}, {'value': 2}, ...] By default, transformations are executed using Ray tasks. For transformations that require setup, specify ``compute=ray.data.ActorPoolStrategy(min, max)`` and Ray will use an autoscaling actor pool of ``min`` to ``max`` actors to execute your transforms. For a fixed-size actor pool, specify ``ActorPoolStrategy(n, n)``. The following is an end-to-end example of reading, transforming, and saving batch inference results using Ray Data: .. code-block:: python from ray.data import ActorPoolStrategy # Example of GPU batch inference on an ImageNet model. def preprocess(image: bytes) -> bytes: return image class BatchInferModel: def __init__(self): self.model = ImageNetModel() def __call__(self, batch: pd.DataFrame) -> pd.DataFrame: return self.model(batch) ds = ray.data.read_binary_files("s3://bucket/image-dir") # Preprocess the data. ds = ds.map(preprocess) # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1123.54it/s] # Apply GPU batch inference with actors, and assign each actor a GPU using # ``num_gpus=1`` (any Ray remote decorator argument can be used here). ds = ds.map_batches( BatchInferModel, compute=ActorPoolStrategy(10, 20), batch_size=256, num_gpus=1) # -> Map Progress (16 actors 4 pending): 100%|██████| 200/200 [00:07, 27.60it/s] # Save the results. ds.repartition(1).write_json("s3://bucket/inference-results") Exchanging datasets =================== Datasets can be passed to Ray tasks or actors and read with ``.iter_batches()`` or ``.iter_rows()``. This does not incur a copy, since the blocks of the Dataset are passed by reference as Ray objects: .. code-block:: python @ray.remote def consume(data: Dataset[int]) -> int: num_batches = 0 for batch in data.iter_batches(): num_batches += 1 return num_batches ds = ray.data.range(10000) ray.get(consume.remote(ds)) # -> 200 Datasets can be split up into disjoint sub-datasets. Locality-aware splitting is supported if you pass in a list of actor handles to the ``split()`` function along with the number of desired splits. This is a common pattern useful for loading and splitting data between distributed training actors: .. code-block:: python @ray.remote(num_gpus=1) class Worker: def __init__(self, rank: int): pass def train(self, shard: ray.data.Dataset[int]) -> int: for batch in shard.iter_batches(batch_size=256): pass return shard.count() workers = [Worker.remote(i) for i in range(16)] # -> [Actor(Worker, ...), Actor(Worker, ...), ...] ds = ray.data.range(10000) # -> Dataset(num_blocks=200, num_rows=10000, schema=) shards = ds.split(n=16, locality_hints=workers) # -> [Dataset(num_blocks=13, num_rows=650, schema=), # Dataset(num_blocks=13, num_rows=650, schema=), ...] ray.get([w.train.remote(s) for w, s in zip(workers, shards)]) # -> [650, 650, ...] .. _dataset_pipelines_quick_start: ----------------------------- Dataset Pipelines Quick Start ----------------------------- Creating a DatasetPipeline ========================== A `DatasetPipeline `__ can be constructed in two ways: either by pipelining the execution of an existing Dataset (via ``Dataset.window``), or generating repeats of an existing Dataset (via ``Dataset.repeat``). Similar to Datasets, you can freely pass DatasetPipelines between Ray tasks, actors, and libraries. Get started with this synthetic data example: .. code-block:: python import ray def func1(i: int) -> int: return i + 1 def func2(i: int) -> int: return i * 2 def func3(i: int) -> int: return i % 3 # Create a dataset and then create a pipeline from it. base = ray.data.range(1000000) print(base) # -> Dataset(num_blocks=200, num_rows=1000000, schema=) pipe = base.window(blocks_per_window=10) print(pipe) # -> DatasetPipeline(num_windows=20, num_stages=1) # Applying transforms to pipelines adds more pipeline stages. pipe = pipe.map(func1) pipe = pipe.map(func2) pipe = pipe.map(func3) print(pipe) # -> DatasetPipeline(num_windows=20, num_stages=4) # Output can be pulled from the pipeline concurrently with its execution. num_rows = 0 for row in pipe.iter_rows(): num_rows += 1 # -> # Stage 0: 55%|█████████████████████████ |11/20 [00:02<00:00, 9.86it/s] # Stage 1: 50%|██████████████████████ |10/20 [00:02<00:01, 9.45it/s] # Stage 2: 45%|███████████████████ | 9/20 [00:02<00:01, 8.27it/s] # Stage 3: 35%|████████████████ | 8/20 [00:02<00:02, 5.33it/s] print("Total num rows", num_rows) # -> Total num rows 1000000 You can also create a DatasetPipeline from a custom iterator over dataset creators using ``DatasetPipeline.from_iterable``. For example, this is how you would implement ``Dataset.repeat`` and ``Dataset.window`` using ``from_iterable``: .. code-block:: python import ray from ray.data.dataset_pipeline import DatasetPipeline # Equivalent to ray.data.range(1000).repeat(times=4) source = ray.data.range(1000) pipe = DatasetPipeline.from_iterable( [lambda: source, lambda: source, lambda: source, lambda: source]) # Equivalent to ray.data.range(1000).window(blocks_per_window=10) splits = ray.data.range(1000, parallelism=200).split(20) pipe = DatasetPipeline.from_iterable([lambda s=s: s for s in splits]) Per-Window Transformations ========================== While most Dataset operations are per-row (e.g., map, filter), some operations apply to the Dataset as a whole (e.g., sort, shuffle). When applied to a pipeline, holistic transforms like shuffle are applied separately to each window in the pipeline: .. code-block:: python # Example of randomly shuffling each window of a pipeline. ray.data.from_items([0, 1, 2, 3, 4]) \ .repeat(2) \ .random_shuffle_each_window() \ .show_windows() # -> # ----- Epoch 0 ------ # === Window 0 === # 4 # 3 # 1 # 0 # 2 # ----- Epoch 1 ------ # === Window 1 === # 2 # 1 # 4 # 0 # 3 You can also apply arbitrary transformations to each window using ``DatasetPipeline.foreach_window()``: .. code-block:: python # Equivalent transformation using .foreach_window() ray.data.from_items([0, 1, 2, 3, 4]) \ .repeat(2) \ .foreach_window(lambda w: w.random_shuffle()) \ .show_windows() # -> # ----- Epoch 0 ------ # === Window 0 === # 1 # 0 # 4 # 2 # 3 # ----- Epoch 1 ------ # === Window 1 === # 4 # 2 # 0 # 3 # 1