from ray.util.iter import LocalIterator from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch from ray.rllib.utils.typing import Dict, SampleBatchType from ray.util.iter_metrics import MetricsContext # Counters for training progress (keys for metrics.counters). STEPS_SAMPLED_COUNTER = "num_steps_sampled" AGENT_STEPS_SAMPLED_COUNTER = "num_agent_steps_sampled" STEPS_TRAINED_COUNTER = "num_steps_trained" STEPS_TRAINED_THIS_ITER_COUNTER = "num_steps_trained_this_iter" AGENT_STEPS_TRAINED_COUNTER = "num_agent_steps_trained" # Counters to track target network updates. LAST_TARGET_UPDATE_TS = "last_target_update_ts" NUM_TARGET_UPDATES = "num_target_updates" # Performance timers (keys for metrics.timers). APPLY_GRADS_TIMER = "apply_grad" COMPUTE_GRADS_TIMER = "compute_grads" WORKER_UPDATE_TIMER = "update" GRAD_WAIT_TIMER = "grad_wait" SAMPLE_TIMER = "sample" LEARN_ON_BATCH_TIMER = "learn" LOAD_BATCH_TIMER = "load" # Asserts that an object is a type of SampleBatch. def _check_sample_batch_type(batch: SampleBatchType) -> None: if not isinstance(batch, (SampleBatch, MultiAgentBatch)): raise ValueError("Expected either SampleBatch or MultiAgentBatch, " "got {}: {}".format(type(batch), batch)) # Returns pipeline global vars that should be periodically sent to each worker. def _get_global_vars() -> Dict: metrics = LocalIterator.get_metrics() return {"timestep": metrics.counters[STEPS_SAMPLED_COUNTER]} def _get_shared_metrics() -> MetricsContext: """Return shared metrics for the training workflow. This only applies if this trainer has an execution plan.""" return LocalIterator.get_metrics()