import unittest import ray import ray.rllib.agents.ppo as ppo from ray.rllib.policy.policy import LEARNER_STATS_KEY from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.test_utils import check_compute_single_action, \ framework_iterator class TestDDPPO(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() @classmethod def tearDownClass(cls): ray.shutdown() def test_ddppo_compilation(self): """Test whether a DDPPOTrainer can be built with both frameworks.""" config = ppo.ddppo.DEFAULT_CONFIG.copy() config["num_gpus_per_worker"] = 0 num_iterations = 2 for _ in framework_iterator(config, "torch"): trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): trainer.train() check_compute_single_action(trainer) trainer.stop() def test_ddppo_schedule(self): """Test whether lr_schedule will anneal lr to 0""" config = ppo.ddppo.DEFAULT_CONFIG.copy() config["num_gpus_per_worker"] = 0 config["lr_schedule"] = [[0, config["lr"]], [1000, 0.0]] num_iterations = 3 for _ in framework_iterator(config, "torch"): trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0") for _ in range(num_iterations): result = trainer.train() lr = result["info"]["learner"][DEFAULT_POLICY_ID][ LEARNER_STATS_KEY]["cur_lr"] trainer.stop() assert lr == 0.0, "lr should anneal to 0.0" if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))