from ray import tune from ray.tune.registry import register_env from ray.rllib.env.wrappers.pettingzoo_env import PettingZooEnv from pettingzoo.sisl import waterworld_v2 # Based on code from github.com/parametersharingmadrl/parametersharingmadrl if __name__ == "__main__": # RDQN - Rainbow DQN # ADQN - Apex DQN def env_creator(args): return PettingZooEnv(waterworld_v2.env()) env = env_creator({}) register_env("waterworld", env_creator) obs_space = env.observation_space act_spc = env.action_space policies = {agent: (None, obs_space, act_spc, {}) for agent in env.agents} tune.run( "APEX_DDPG", stop={"episodes_total": 60000}, checkpoint_freq=10, config={ # Enviroment specific "env": "waterworld", # General "num_gpus": 1, "num_workers": 2, # Method specific "multiagent": { "policies": policies, "policy_mapping_fn": (lambda agent_id: agent_id), }, }, )