import numpy as np import gym from gym.envs.mujoco.mujoco_env import MujocoEnv from ray.rllib.env.meta_env import MetaEnv class AntRandGoalEnv(gym.utils.EzPickle, MujocoEnv, MetaEnv): """Ant Environment that randomizes goals as tasks Goals are randomly sampled 2D positions """ def __init__(self): self.set_task(self.sample_tasks(1)[0]) MujocoEnv.__init__(self, "ant.xml", 5) gym.utils.EzPickle.__init__(self) def sample_tasks(self, n_tasks): # Samples a goal position (2x1 position ector) a = np.random.random(n_tasks) * 2 * np.pi r = 3 * np.random.random(n_tasks)**0.5 return np.stack((r * np.cos(a), r * np.sin(a)), axis=-1) def set_task(self, task): """ Args: task: task of the meta-learning environment """ self.goal_pos = task def get_task(self): """ Returns: task: task of the meta-learning environment """ return self.goal_pos def step(self, a): self.do_simulation(a, self.frame_skip) xposafter = self.get_body_com("torso") goal_reward = -np.sum(np.abs( xposafter[:2] - self.goal_pos)) # make it happy, not suicidal ctrl_cost = .1 * np.square(a).sum() contact_cost = 0.5 * 1e-3 * np.sum( np.square(np.clip(self.sim.data.cfrc_ext, -1, 1))) # survive_reward = 1.0 survive_reward = 0.0 reward = goal_reward - ctrl_cost - contact_cost + survive_reward # notdone = np.isfinite(state).all() and 1.0 >= state[2] >= 0. # done = not notdone done = False ob = self._get_obs() return ob, reward, done, dict( reward_forward=goal_reward, reward_ctrl=-ctrl_cost, reward_contact=-contact_cost, reward_survive=survive_reward) def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat, self.sim.data.qvel.flat, np.clip(self.sim.data.cfrc_ext, -1, 1).flat, ]) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( size=self.model.nq, low=-.1, high=.1) qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5