#!/bin/bash TOTAL_UPDATES=125000 # Total number of training steps WARMUP_UPDATES=10000 # Warmup the learning rate over this many updates PEAK_LR=0.0005 # Peak learning rate, adjust as needed TOKENS_PER_SAMPLE=512 # Max sequence length #MAX_POSITIONS=512 # Num. positional embeddings (usually same as above) MAX_SENTENCES=8 # Number of sequences per batch on one GPU (batch size) FIX_BATCH_SIZE=2048 # Number of batch size in total (max_sentences * update_freq * n_gpus) SAVE_INTERVAL_UPDATES=1000 # save a checkpoint every N updates LOG_DIR=$HOME/efs/lm/log/ DATA_DIR=$HOME/efs/lm/data-bin/wikitext-103/ mkdir -p "$LOG_DIR" python "$HOME"/efs/lm/ray_train.py --fp16 "$DATA_DIR" \ --task masked_lm --criterion masked_lm \ --arch roberta_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ --max-sentences $MAX_SENTENCES \ --fix-batch-size $FIX_BATCH_SIZE \ --max-update $TOTAL_UPDATES --log-format simple --log-interval 1 \ --save-interval-updates $SAVE_INTERVAL_UPDATES \ --save-dir "$LOG_DIR" --ddp-backend=no_c10d