import argparse import os import ray from ray import tune from ray.rllib.examples.env.mock_env import MockVectorEnv from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=35.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init() # episode-len=100 # num-envs=4 (note that these are fake-envs as the MockVectorEnv only # carries a single CartPole sub-env in it). tune.register_env("custom_vec_env", lambda env_ctx: MockVectorEnv(100, 4)) config = { "env": "custom_vec_env", # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 2, # parallelism "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()