import argparse import os import ray from ray import tune parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument("--stop-iters", type=int, default=200) parser.add_argument("--stop-timesteps", type=int, default=100000) parser.add_argument("--stop-reward", type=float, default=150.0) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) # Simple PPO config. config = { "env": "CartPole-v0", # Run 3 trials. "lr": tune.grid_search([0.01, 0.001, 0.0001]), # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "framework": args.framework, # Run with tracing enabled for tfe/tf2. "eager_tracing": args.framework in ["tfe", "tf2"], } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } # Run tune for some iterations and generate checkpoints. results = tune.run(args.run, config=config, stop=stop, checkpoint_freq=1) # Get the best of the 3 trials by using some metric. # NOTE: Choosing the min `episodes_this_iter` automatically picks the trial # with the best performance (over the entire run (scope="all")): # The fewer episodes, the longer each episode lasted, the more reward we # got each episode. # Setting scope to "last", "last-5-avg", or "last-10-avg" will only compare # (using `mode=min|max`) the average values of the last 1, 5, or 10 # iterations with each other, respectively. # Setting scope to "avg" will compare (using `mode`=min|max) the average # values over the entire run. metric = "episodes_this_iter" best_trial = results.get_best_trial(metric=metric, mode="min", scope="all") value_best_metric = best_trial.metric_analysis[metric]["min"] print("Best trial's lowest episode length (over all " "iterations): {}".format(value_best_metric)) # Confirm, we picked the right trial. assert all(value_best_metric <= results.results[t][metric] for t in results.results.keys()) # Get the best checkpoints from the trial, based on different metrics. # Checkpoint with the lowest policy loss value: ckpt = results.get_best_checkpoint( best_trial, metric="info/learner/default_policy/learner_stats/policy_loss", mode="min") print("Lowest pol-loss: {}".format(ckpt)) # Checkpoint with the highest value-function loss: ckpt = results.get_best_checkpoint( best_trial, metric="info/learner/default_policy/learner_stats/vf_loss", mode="max") print("Highest vf-loss: {}".format(ckpt)) ray.shutdown()