#!/usr/bin/env bash # Cause the script to exit if a single command fails. set -e # Show explicitly which commands are currently running. set -x ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd) DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache) echo "Using Docker image" $DOCKER_SHA docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env PongDeterministic-v0 \ --run A3C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pong-ram-v4 \ --run A3C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env PongDeterministic-v0 \ --run A2C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"free_log_std": true}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"simple_optimizer": false, "num_sgd_iter": 2, "model": {"use_lstm": true}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"simple_optimizer": true, "num_sgd_iter": 2, "model": {"use_lstm": true}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "use_gae": false}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run ES \ --stop '{"training_iteration": 2}' \ --config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pong-v0 \ --run ES \ --stop '{"training_iteration": 2}' \ --config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run A3C \ --stop '{"training_iteration": 2}' \ docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 2}' \ --config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run APEX \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2, "timesteps_per_iteration": 1000, "gpu": false, "min_iter_time_s": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run DQN \ --stop '{"training_iteration": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"num_sgd_iter": 10, "sgd_minibatch_size": 64, "train_batch_size": 1000, "num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env PongDeterministic-v4 \ --run DQN \ --stop '{"training_iteration": 2}' \ --config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env MontezumaRevenge-v0 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run A3C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2, "model": {"use_lstm": true}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 2}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 2}' \ --config '{"sample_batch_size": 500, "num_workers": 1, "model": {"use_lstm": true, "max_seq_len": 100}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 2}' \ --config '{"sample_batch_size": 500, "num_workers": 1, "num_envs_per_worker": 10}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pong-v0 \ --run PG \ --stop '{"training_iteration": 2}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run PG \ --stop '{"training_iteration": 2}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run DDPG \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 2}' \ --config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 2}' \ --config '{"gpu": false, "num_workers": 2, "min_iter_time_s": 1, "model": {"use_lstm": true}}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env MountainCarContinuous-v0 \ --run DDPG \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ rllib train \ --env MountainCarContinuous-v0 \ --run DDPG \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run APEX_DDPG \ --ray-num-cpus 8 \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2, "optimizer": {"num_replay_buffer_shards": 1}, "learning_starts": 100, "min_iter_time_s": 1}' docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ sh /ray/test/jenkins_tests/multi_node_tests/test_rllib_eval.sh docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_local.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_checkpoint_restore.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_policy_evaluator.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_serving_env.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_lstm.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_multi_agent_env.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/test/test_supported_spaces.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/tune_mnist_ray.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/pbt_example.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/hyperband_example.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/async_hyperband_example.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/tune_mnist_ray_hyperband.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/tune_mnist_async_hyperband.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/hyperopt_example.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/tune_mnist_keras.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/mnist_pytorch.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/mnist_pytorch_trainable.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/tune/examples/genetic_example.py \ --smoke-test docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_mountaincar.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/examples/legacy_multiagent/multiagent_pendulum.py docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/examples/multiagent_cartpole.py --num-iters=2 docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/examples/multiagent_two_trainers.py --num-iters=2 docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/examples/cartpole_lstm.py --stop=75 docker run -e "RAY_USE_XRAY=1" --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/experimental/sgd/test_sgd.py --num-iters=2 # No Xray for PyTorch docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env PongDeterministic-v4 \ --run A3C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2, "use_pytorch": true, "model": {"use_lstm": false, "grayscale": true, "zero_mean": false, "dim": 84, "channel_major": true}, "preprocessor_pref": "rllib"}' # No Xray for PyTorch docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA \ python /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run A3C \ --stop '{"training_iteration": 2}' \ --config '{"num_workers": 2, "use_pytorch": true}' python3 $ROOT_DIR/multi_node_docker_test.py \ --docker-image=$DOCKER_SHA \ --num-nodes=5 \ --num-redis-shards=10 \ --use-raylet \ --test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py python3 $ROOT_DIR/multi_node_docker_test.py \ --docker-image=$DOCKER_SHA \ --num-nodes=5 \ --num-redis-shards=5 \ --num-gpus=0,1,2,3,4 \ --num-drivers=7 \ --driver-locations=0,1,0,1,2,3,4 \ --test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py python3 $ROOT_DIR/multi_node_docker_test.py \ --docker-image=$DOCKER_SHA \ --num-nodes=5 \ --num-redis-shards=2 \ --num-gpus=0,0,5,6,50 \ --num-drivers=100 \ --use-raylet \ --test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py python3 $ROOT_DIR/multi_node_docker_test.py \ --docker-image=$DOCKER_SHA \ --num-nodes=1 \ --mem-size=60G \ --shm-size=60G \ --use-raylet \ --test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py