from abc import ABC import ray import numpy as np from ray.rllib import Policy from ray.rllib.agents import with_common_config from ray.rllib.agents.trainer import Trainer from ray.rllib.execution.rollout_ops import synchronous_parallel_sample from ray.rllib.examples.env.parametric_actions_cartpole import ParametricActionsCartPole from ray.rllib.models.modelv2 import restore_original_dimensions from ray.rllib.utils import override from ray.rllib.utils.typing import ResultDict from ray.tune.registry import register_env DEFAULT_CONFIG = with_common_config( { # Run with new `training_iteration` API. "_disable_execution_plan_api": True, } ) class RandomParametricPolicy(Policy, ABC): """ Just pick a random legal action The outputted state of the environment needs to be a dictionary with an 'action_mask' key containing the legal actions for the agent. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.exploration = self._create_exploration() @override(Policy) def compute_actions( self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, **kwargs ): obs_batch = restore_original_dimensions( np.array(obs_batch, dtype=np.float32), self.observation_space, tensorlib=np ) def pick_legal_action(legal_action): return np.random.choice( len(legal_action), 1, p=(legal_action / legal_action.sum()) )[0] return [pick_legal_action(x) for x in obs_batch["action_mask"]], [], {} def learn_on_batch(self, samples): pass def get_weights(self): pass def set_weights(self, weights): pass class RandomParametricTrainer(Trainer): """Trainer with Policy and config defined above and overriding `training_iteration`. Overrides the `training_iteration` method, which only runs a (dummy) rollout and performs no learning. """ @classmethod def get_default_config(cls): return DEFAULT_CONFIG def get_default_policy_class(self, config): return RandomParametricPolicy @override(Trainer) def training_iteration(self) -> ResultDict: # Perform rollouts (only for collecting metrics later). synchronous_parallel_sample(worker_set=self.workers) # Return (empty) training metrics. return {} def main(): register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10)) trainer = RandomParametricTrainer(env="pa_cartpole") result = trainer.train() assert result["episode_reward_mean"] > 10, result print("Test: OK") if __name__ == "__main__": ray.init() main()