from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ray from ray import tune from ray.rllib.agents.trainer_template import build_trainer from ray.rllib.evaluation.postprocessing import discount from ray.rllib.policy.tf_policy_template import build_tf_policy from ray.rllib.utils import try_import_tf tf = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--iters", type=int, default=200) def policy_gradient_loss(policy, model, dist_class, train_batch): logits, _ = model.from_batch(train_batch) action_dist = dist_class(logits, model) return -tf.reduce_mean( action_dist.logp(train_batch["actions"]) * train_batch["returns"]) def calculate_advantages(policy, sample_batch, other_agent_batches=None, episode=None): sample_batch["returns"] = discount(sample_batch["rewards"], 0.99) return sample_batch # MyTFPolicy = build_tf_policy( name="MyTFPolicy", loss_fn=policy_gradient_loss, postprocess_fn=calculate_advantages, ) # MyTrainer = build_trainer( name="MyCustomTrainer", default_policy=MyTFPolicy, ) if __name__ == "__main__": ray.init() args = parser.parse_args() tune.run( MyTrainer, stop={"training_iteration": args.iters}, config={ "env": "CartPole-v0", "num_workers": 2, })