"""The two-step game from QMIX: https://arxiv.org/pdf/1803.11485.pdf Configurations you can try: - normal policy gradients (PG) - contrib/MADDPG - QMIX See also: centralized_critic.py for centralized critic PPO on this game. """ import argparse from gym.spaces import Tuple, MultiDiscrete, Dict, Discrete import ray from ray import tune from ray.tune import register_env, grid_search from ray.rllib.env.multi_agent_env import ENV_STATE from ray.rllib.examples.env.two_step_game import TwoStepGame from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PG") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument("--as-test", action="store_true") parser.add_argument("--torch", action="store_true") parser.add_argument("--stop-reward", type=float, default=7.0) parser.add_argument("--stop-timesteps", type=int, default=50000) if __name__ == "__main__": args = parser.parse_args() grouping = { "group_1": [0, 1], } obs_space = Tuple([ Dict({ "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]) }), Dict({ "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]) }), ]) act_space = Tuple([ TwoStepGame.action_space, TwoStepGame.action_space, ]) register_env( "grouped_twostep", lambda config: TwoStepGame(config).with_agent_groups( grouping, obs_space=obs_space, act_space=act_space)) if args.run == "contrib/MADDPG": obs_space_dict = { "agent_1": Discrete(6), "agent_2": Discrete(6), } act_space_dict = { "agent_1": TwoStepGame.action_space, "agent_2": TwoStepGame.action_space, } config = { "learning_starts": 100, "env_config": { "actions_are_logits": True, }, "multiagent": { "policies": { "pol1": (None, Discrete(6), TwoStepGame.action_space, { "agent_id": 0, }), "pol2": (None, Discrete(6), TwoStepGame.action_space, { "agent_id": 1, }), }, "policy_mapping_fn": lambda x: "pol1" if x == 0 else "pol2", }, "framework": "torch" if args.torch else "tf", } group = False elif args.run == "QMIX": config = { "rollout_fragment_length": 4, "train_batch_size": 32, "exploration_config": { "epsilon_timesteps": 5000, "final_epsilon": 0.05, }, "num_workers": 0, "mixer": grid_search([None, "qmix", "vdn"]), "env_config": { "separate_state_space": True, "one_hot_state_encoding": True }, "framework": "torch" if args.torch else "tf", } group = True else: config = {"framework": "torch" if args.torch else "tf"} group = False ray.init(num_cpus=args.num_cpus or None) stop = { "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, } config = dict(config, **{ "env": "grouped_twostep" if group else TwoStepGame, }) results = tune.run(args.run, stop=stop, config=config, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()