import numpy as np import time from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY, ACTION_PROB, \ ACTION_LOGP from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.annotations import override, DeveloperAPI from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.schedules import ConstantSchedule, PiecewiseSchedule from ray.rllib.utils.torch_ops import convert_to_non_torch_type from ray.rllib.utils.tracking_dict import UsageTrackingDict torch, _ = try_import_torch() class TorchPolicy(Policy): """Template for a PyTorch policy and loss to use with RLlib. This is similar to TFPolicy, but for PyTorch. Attributes: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): config of the policy. model (TorchModel): Torch model instance. dist_class (type): Torch action distribution class. """ def __init__(self, observation_space, action_space, config, model, loss, action_distribution_class): """Build a policy from policy and loss torch modules. Note that model will be placed on GPU device if CUDA_VISIBLE_DEVICES is set. Only single GPU is supported for now. Arguments: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): The Policy config dict. model (nn.Module): PyTorch policy module. Given observations as input, this module must return a list of outputs where the first item is action logits, and the rest can be any value. loss (func): Function that takes (policy, model, dist_class, train_batch) and returns a single scalar loss. action_distribution_class (ActionDistribution): Class for action distribution. """ self.framework = "torch" super().__init__(observation_space, action_space, config) self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")) self.model = model.to(self.device) self.unwrapped_model = model # used to support DistributedDataParallel self._loss = loss self._optimizer = self.optimizer() self.dist_class = action_distribution_class # If set, means we are using distributed allreduce during learning. self.distributed_world_size = None @override(Policy) def compute_actions(self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, explore=None, timestep=None, **kwargs): explore = explore if explore is not None else self.config["explore"] with torch.no_grad(): input_dict = self._lazy_tensor_dict({ SampleBatch.CUR_OBS: obs_batch, }) if prev_action_batch: input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch if prev_reward_batch: input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch state_batches = [self._convert_to_tensor(s) for s in state_batches] model_out = self.model(input_dict, state_batches, self._convert_to_tensor([1])) logits, state = model_out action_dist = None actions, logp = \ self.exploration.get_exploration_action( logits, self.dist_class, self.model, timestep if timestep is not None else self.global_timestep, explore) input_dict[SampleBatch.ACTIONS] = actions extra_action_out = self.extra_action_out(input_dict, state_batches, self.model, action_dist) if logp is not None: logp = convert_to_non_torch_type(logp) extra_action_out.update({ ACTION_PROB: np.exp(logp), ACTION_LOGP: logp }) return convert_to_non_torch_type( (actions, state, extra_action_out)) @override(Policy) def compute_log_likelihoods(self, actions, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None): with torch.no_grad(): input_dict = self._lazy_tensor_dict({ SampleBatch.CUR_OBS: obs_batch, SampleBatch.ACTIONS: actions }) if prev_action_batch: input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch if prev_reward_batch: input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch parameters, _ = self.model(input_dict, state_batches, [1]) action_dist = self.dist_class(parameters, self.model) log_likelihoods = action_dist.logp(input_dict[SampleBatch.ACTIONS]) return log_likelihoods @override(Policy) def learn_on_batch(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() info = {} info.update(self.extra_grad_process()) if self.distributed_world_size: grads = [] for p in self.model.parameters(): if p.grad is not None: grads.append(p.grad) start = time.time() if torch.cuda.is_available(): # Sadly, allreduce_coalesced does not work with CUDA yet. for g in grads: torch.distributed.all_reduce( g, op=torch.distributed.ReduceOp.SUM) else: torch.distributed.all_reduce_coalesced( grads, op=torch.distributed.ReduceOp.SUM) for p in self.model.parameters(): if p.grad is not None: p.grad /= self.distributed_world_size info["allreduce_latency"] = time.time() - start self._optimizer.step() info.update(self.extra_grad_info(train_batch)) return {LEARNER_STATS_KEY: info} @override(Policy) def compute_gradients(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() grad_process_info = self.extra_grad_process() # Note that return values are just references; # calling zero_grad will modify the values grads = [] for p in self.model.parameters(): if p.grad is not None: grads.append(p.grad.data.cpu().numpy()) else: grads.append(None) grad_info = self.extra_grad_info(train_batch) grad_info.update(grad_process_info) return grads, {LEARNER_STATS_KEY: grad_info} @override(Policy) def apply_gradients(self, gradients): for g, p in zip(gradients, self.model.parameters()): if g is not None: p.grad = torch.from_numpy(g).to(self.device) self._optimizer.step() @override(Policy) def get_weights(self): return {k: v.cpu() for k, v in self.model.state_dict().items()} @override(Policy) def set_weights(self, weights): self.model.load_state_dict(weights) @override(Policy) def is_recurrent(self): return len(self.model.get_initial_state()) > 0 @override(Policy) def num_state_tensors(self): return len(self.model.get_initial_state()) @override(Policy) def get_initial_state(self): return [s.numpy() for s in self.model.get_initial_state()] def extra_grad_process(self): """Allow subclass to do extra processing on gradients and return processing info.""" return {} def extra_action_out(self, input_dict, state_batches, model, action_dist=None): """Returns dict of extra info to include in experience batch. Arguments: input_dict (dict): Dict of model input tensors. state_batches (list): List of state tensors. model (TorchModelV2): Reference to the model. action_dist (Distribution): Torch Distribution object to get log-probs (e.g. for already sampled actions). """ return {} def extra_grad_info(self, train_batch): """Return dict of extra grad info.""" return {} def optimizer(self): """Custom PyTorch optimizer to use.""" if hasattr(self, "config"): return torch.optim.Adam( self.model.parameters(), lr=self.config["lr"]) else: return torch.optim.Adam(self.model.parameters()) def _lazy_tensor_dict(self, postprocessed_batch): train_batch = UsageTrackingDict(postprocessed_batch) train_batch.set_get_interceptor(self._convert_to_tensor) return train_batch def _convert_to_tensor(self, arr): if torch.is_tensor(arr): return arr.to(self.device) tensor = torch.from_numpy(np.asarray(arr)) if tensor.dtype == torch.double: tensor = tensor.float() return tensor.to(self.device) @override(Policy) def export_model(self, export_dir): """TODO: implement for torch. """ raise NotImplementedError @override(Policy) def export_checkpoint(self, export_dir): """TODO: implement for torch. """ raise NotImplementedError @DeveloperAPI class LearningRateSchedule: """Mixin for TFPolicy that adds a learning rate schedule.""" @DeveloperAPI def __init__(self, lr, lr_schedule): self.cur_lr = lr if lr_schedule is None: self.lr_schedule = ConstantSchedule(lr, framework=None) else: self.lr_schedule = PiecewiseSchedule( lr_schedule, outside_value=lr_schedule[-1][-1], framework=None) @override(Policy) def on_global_var_update(self, global_vars): super(LearningRateSchedule, self).on_global_var_update(global_vars) self.cur_lr = self.lr_schedule.value(global_vars["timestep"]) @override(TorchPolicy) def optimizer(self): for p in self._optimizer.param_groups: p["lr"] = self.cur_lr return self._optimizer @DeveloperAPI class EntropyCoeffSchedule: """Mixin for TorchPolicy that adds entropy coeff decay.""" @DeveloperAPI def __init__(self, entropy_coeff, entropy_coeff_schedule): self.entropy_coeff = entropy_coeff if entropy_coeff_schedule is None: self.entropy_coeff_schedule = ConstantSchedule( entropy_coeff, framework=None) else: # Allows for custom schedule similar to lr_schedule format if isinstance(entropy_coeff_schedule, list): self.entropy_coeff_schedule = PiecewiseSchedule( entropy_coeff_schedule, outside_value=entropy_coeff_schedule[-1][-1], framework=None) else: # Implements previous version but enforces outside_value self.entropy_coeff_schedule = PiecewiseSchedule( [[0, entropy_coeff], [entropy_coeff_schedule, 0.0]], outside_value=0.0, framework=None) @override(Policy) def on_global_var_update(self, global_vars): super(EntropyCoeffSchedule, self).on_global_var_update(global_vars) self.entropy_coeff = self.entropy_coeff_schedule.value( global_vars["timestep"])