from typing import Dict, List import gym from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.misc import normc_initializer from ray.rllib.models.utils import get_activation_fn, get_filter_config from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.typing import ModelConfigDict, TensorType tf1, tf, tfv = try_import_tf() class VisionNetwork(TFModelV2): """Generic vision network implemented in ModelV2 API.""" def __init__(self, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, num_outputs: int, model_config: ModelConfigDict, name: str): if not model_config.get("conv_filters"): model_config["conv_filters"] = get_filter_config(obs_space.shape) super(VisionNetwork, self).__init__(obs_space, action_space, num_outputs, model_config, name) activation = get_activation_fn( self.model_config.get("conv_activation"), framework="tf") filters = self.model_config["conv_filters"] assert len(filters) > 0,\ "Must provide at least 1 entry in `conv_filters`!" no_final_linear = self.model_config.get("no_final_linear") vf_share_layers = self.model_config.get("vf_share_layers") inputs = tf.keras.layers.Input( shape=obs_space.shape, name="observations") last_layer = inputs # Whether the last layer is the output of a Flattened (rather than # a n x (1,1) Conv2D). self.last_layer_is_flattened = False # Build the action layers for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1): last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="same", data_format="channels_last", name="conv{}".format(i))(last_layer) out_size, kernel, stride = filters[-1] # No final linear: Last layer is a Conv2D and uses num_outputs. if no_final_linear and num_outputs: last_layer = tf.keras.layers.Conv2D( num_outputs, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv_out")(last_layer) conv_out = last_layer # Finish network normally (w/o overriding last layer size with # `num_outputs`), then add another linear one of size `num_outputs`. else: last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv{}".format(len(filters)))(last_layer) # num_outputs defined. Use that to create an exact # `num_output`-sized (1,1)-Conv2D. if num_outputs: conv_out = tf.keras.layers.Conv2D( num_outputs, [1, 1], activation=None, padding="same", data_format="channels_last", name="conv_out")(last_layer) if conv_out.shape[1] != 1 or conv_out.shape[2] != 1: raise ValueError( "Given `conv_filters` ({}) do not result in a [B, 1, " "1, {} (`num_outputs`)] shape (but in {})! Please " "adjust your Conv2D stack such that the dims 1 and 2 " "are both 1.".format(self.model_config["conv_filters"], self.num_outputs, list(conv_out.shape))) # num_outputs not known -> Flatten, then set self.num_outputs # to the resulting number of nodes. else: self.last_layer_is_flattened = True conv_out = tf.keras.layers.Flatten( data_format="channels_last")(last_layer) self.num_outputs = conv_out.shape[1] # Build the value layers if vf_share_layers: last_layer = tf.keras.layers.Lambda( lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer) value_out = tf.keras.layers.Dense( 1, name="value_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) else: # build a parallel set of hidden layers for the value net last_layer = inputs for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1): last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="same", data_format="channels_last", name="conv_value_{}".format(i))(last_layer) out_size, kernel, stride = filters[-1] last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv_value_{}".format(len(filters)))(last_layer) last_layer = tf.keras.layers.Conv2D( 1, [1, 1], activation=None, padding="same", data_format="channels_last", name="conv_value_out")(last_layer) value_out = tf.keras.layers.Lambda( lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer) self.base_model = tf.keras.Model(inputs, [conv_out, value_out]) self.register_variables(self.base_model.variables) def forward(self, input_dict: Dict[str, TensorType], state: List[TensorType], seq_lens: TensorType) -> (TensorType, List[TensorType]): # Explicit cast to float32 needed in eager. model_out, self._value_out = self.base_model( tf.cast(input_dict["obs"], tf.float32)) # Our last layer is already flat. if self.last_layer_is_flattened: return model_out, state # Last layer is a n x [1,1] Conv2D -> Flatten. else: return tf.squeeze(model_out, axis=[1, 2]), state def value_function(self) -> TensorType: return tf.reshape(self._value_out, [-1])