import unittest import ray import ray.rllib.agents.ppo as ppo from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, \ LEARNER_STATS_KEY from ray.rllib.utils.test_utils import check_compute_single_action, \ check_train_results, framework_iterator class TestAPPO(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() @classmethod def tearDownClass(cls): ray.shutdown() def test_appo_compilation(self): """Test whether an APPOTrainer can be built with both frameworks.""" config = ppo.appo.DEFAULT_CONFIG.copy() config["num_workers"] = 1 num_iterations = 2 for _ in framework_iterator(config, with_eager_tracing=True): print("w/o v-trace") _config = config.copy() _config["vtrace"] = False trainer = ppo.APPOTrainer(config=_config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer) trainer.stop() print("w/ v-trace") _config = config.copy() _config["vtrace"] = True trainer = ppo.APPOTrainer(config=_config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer) trainer.stop() def test_appo_two_tf_optimizers(self): config = ppo.appo.DEFAULT_CONFIG.copy() config["num_workers"] = 1 # Not explicitly setting this should cause a warning, but not fail. # config["_tf_policy_handles_more_than_one_loss"] = True config["_separate_vf_optimizer"] = True config["_lr_vf"] = 0.0002 # Make sure we have two completely separate models for policy and # value function. config["model"]["vf_share_layers"] = False num_iterations = 2 # Only supported for tf so far. for _ in framework_iterator(config, frameworks=("tf2", "tf")): trainer = ppo.APPOTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer) trainer.stop() def test_appo_entropy_coeff_schedule(self): config = ppo.appo.DEFAULT_CONFIG.copy() config["num_workers"] = 1 config["num_gpus"] = 0 config["train_batch_size"] = 20 config["batch_mode"] = "truncate_episodes" config["rollout_fragment_length"] = 10 config["timesteps_per_iteration"] = 20 # 0 metrics reporting delay, this makes sure timestep, # which entropy coeff depends on, is updated after each worker rollout. config["min_iter_time_s"] = 0 # Initial lr, doesn't really matter because of the schedule below. config["entropy_coeff"] = 0.01 schedule = [ [0, 0.01], [120, 0.0001], ] config["entropy_coeff_schedule"] = schedule def _step_n_times(trainer, n: int): """Step trainer n times. Returns: learning rate at the end of the execution. """ for _ in range(n): results = trainer.train() return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][ LEARNER_STATS_KEY]["entropy_coeff"] for _ in framework_iterator(config): trainer = ppo.APPOTrainer(config=config, env="CartPole-v0") coeff = _step_n_times(trainer, 1) # 20 timesteps # Should be close to the starting coeff of 0.01. self.assertGreaterEqual(coeff, 0.005) coeff = _step_n_times(trainer, 10) # 200 timesteps # Should have annealed to the final coeff of 0.0001. self.assertLessEqual(coeff, 0.00011) trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))