cluster_name: ray-rllib-stress-tests min_workers: 9 max_workers: 9 idle_timeout_minutes: 15 docker: image: anyscale/ray-ml:latest-gpu container_name: ray_container pull_before_run: True provider: type: aws region: us-west-2 availability_zone: us-west-2a cache_stopped_nodes: False auth: ssh_user: ubuntu head_node: InstanceType: p3.16xlarge worker_nodes: InstanceType: m5.16xlarge file_mounts: { # "/path1/on/remote/machine": "/path1/on/local/machine", # "/path2/on/remote/machine": "/path2/on/local/machine", } setup_commands: - apt-get install -y libglib2.0-0 libcudnn7=7.6.5.32-1+cuda10.1 - pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/latest/ray-2.0.0.dev0-cp37-cp37m-manylinux2014_x86_64.whl worker_setup_commands: [] head_start_ray_commands: - ray stop - ulimit -n 65536; OMP_NUM_THREADS=1 ray start --head --port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml worker_start_ray_commands: - ray stop - ulimit -n 65536; OMP_NUM_THREADS=1 ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076