"""Helper class for AsyncSamplesOptimizer.""" import threading from six.moves import queue from ray.rllib.evaluation.metrics import get_learner_stats from ray.rllib.optimizers.aso_minibatch_buffer import MinibatchBuffer from ray.rllib.utils.timer import TimerStat from ray.rllib.utils.window_stat import WindowStat class LearnerThread(threading.Thread): """Background thread that updates the local model from sample trajectories. This is for use with AsyncSamplesOptimizer. The learner thread communicates with the main thread through Queues. This is needed since Ray operations can only be run on the main thread. In addition, moving heavyweight gradient ops session runs off the main thread improves overall throughput. """ def __init__(self, local_worker, minibatch_buffer_size, num_sgd_iter, learner_queue_size, learner_queue_timeout): """Initialize the learner thread. Arguments: local_worker (RolloutWorker): process local rollout worker holding policies this thread will call learn_on_batch() on minibatch_buffer_size (int): max number of train batches to store in the minibatching buffer num_sgd_iter (int): number of passes to learn on per train batch learner_queue_size (int): max size of queue of inbound train batches to this thread learner_queue_timeout (int): raise an exception if the queue has been empty for this long in seconds """ threading.Thread.__init__(self) self.learner_queue_size = WindowStat("size", 50) self.local_worker = local_worker self.inqueue = queue.Queue(maxsize=learner_queue_size) self.outqueue = queue.Queue() self.minibatch_buffer = MinibatchBuffer( inqueue=self.inqueue, size=minibatch_buffer_size, timeout=learner_queue_timeout, num_passes=num_sgd_iter, init_num_passes=num_sgd_iter) self.queue_timer = TimerStat() self.grad_timer = TimerStat() self.load_timer = TimerStat() self.load_wait_timer = TimerStat() self.daemon = True self.weights_updated = False self.stats = {} self.stopped = False self.num_steps = 0 def run(self): while not self.stopped: self.step() def step(self): with self.queue_timer: batch, _ = self.minibatch_buffer.get() with self.grad_timer: fetches = self.local_worker.learn_on_batch(batch) self.weights_updated = True self.stats = get_learner_stats(fetches) self.num_steps += 1 self.outqueue.put(batch.count) self.learner_queue_size.push(self.inqueue.qsize())