.. _datasets_getting_started: =============== Getting Started =============== In this tutorial you will learn how to: - Create and save a Ray ``Dataset``. - Transform a ``Dataset``. - Pass a ``Dataset`` to Ray tasks/actors and access the data inside. .. _ray_datasets_quick_start: ------------------- Dataset Quick Start ------------------- Ray Datasets implements Distributed `Arrow `__. A Dataset consists of a list of Ray object references to *blocks*. Each block holds a set of items in either an `Arrow table `__ (when creating from or transforming to tabular or tensor data), a `Pandas DataFrame `__ (when creating from or transforming to Pandas data), or a Python list (otherwise). Let's start by creating a Dataset. Creating Datasets ================= .. tip:: Run ``pip install "ray[data]"`` to get started! You can get started by creating Datasets from synthetic data using ``ray.data.range()`` and ``ray.data.from_items()``. Datasets can hold either plain Python objects (i.e. their schema is a Python type), or Arrow records (in which case their schema is Arrow). .. code-block:: python import ray # Create a Dataset of Python objects. ds = ray.data.range(10000) # -> Dataset(num_blocks=200, num_rows=10000, schema=) ds.take(5) # -> [0, 1, 2, 3, 4] ds.count() # -> 10000 # Create a Dataset of Arrow records. ds = ray.data.from_items([{"col1": i, "col2": str(i)} for i in range(10000)]) # -> Dataset(num_blocks=200, num_rows=10000, schema={col1: int64, col2: string}) ds.show(5) # -> {'col1': 0, 'col2': '0'} # -> {'col1': 1, 'col2': '1'} # -> {'col1': 2, 'col2': '2'} # -> {'col1': 3, 'col2': '3'} # -> {'col1': 4, 'col2': '4'} ds.schema() # -> col1: int64 # -> col2: string Datasets can be created from files on local disk or remote datasources such as S3. Any filesystem `supported by pyarrow `__ can be used to specify file locations: .. code-block:: python # Read a directory of files in remote storage. ds = ray.data.read_csv("s3://bucket/path") # Read multiple local files. ds = ray.data.read_csv(["/path/to/file1", "/path/to/file2"]) # Read multiple directories. ds = ray.data.read_csv(["s3://bucket/path1", "s3://bucket/path2"]) Finally, you can create a ``Dataset`` from existing data in the Ray object store or Ray-compatible distributed DataFrames: .. code-block:: python import pandas as pd import dask.dataframe as dd # Create a Dataset from a list of Pandas DataFrame objects. pdf = pd.DataFrame({"one": [1, 2, 3], "two": ["a", "b", "c"]}) ds = ray.data.from_pandas([pdf]) # Create a Dataset from a Dask-on-Ray DataFrame. dask_df = dd.from_pandas(pdf, npartitions=10) ds = ray.data.from_dask(dask_df) Saving Datasets =============== Datasets can be written to local or remote storage using ``.write_csv()``, ``.write_json()``, and ``.write_parquet()``. .. code-block:: python # Write to csv files in /tmp/output. ray.data.range(10000).write_csv("/tmp/output") # -> /tmp/output/data0.csv, /tmp/output/data1.csv, ... # Use repartition to control the number of output files: ray.data.range(10000).repartition(1).write_csv("/tmp/output2") # -> /tmp/output2/data0.csv You can also convert a ``Dataset`` to Ray-compatible distributed DataFrames: .. code-block:: python # Convert a Ray Dataset into a Dask-on-Ray DataFrame. dask_df = ds.to_dask() Transforming Datasets ===================== Datasets can be transformed in parallel using ``.map_batches()``. Ray will transform batches of records in the Dataset using the given function. The function must return a batch of records. You are allowed to filter or add additional records to the batch, which will change the size of the Dataset. Transformations are executed *eagerly* and block until the operation is finished. .. code-block:: python def transform_batch(df: pandas.DataFrame) -> pandas.DataFrame: return df.applymap(lambda x: x * 2) ds = ray.data.range_arrow(10000) ds = ds.map_batches(transform_batch, batch_format="pandas") # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1927.62it/s] ds.take(5) # -> [{'value': 0}, {'value': 2}, ...] The batch format can be specified using ``batch_format`` option, which defaults to "native", meaning pandas format for Arrow-compatible batches, and Python lists for other types. You can also specify explicitly "arrow" or "pandas" to force a conversion to that batch format. The batch size can also be chosen. If not given, the batch size will default to entire blocks. .. tip:: Datasets also provides the convenience methods ``map``, ``flat_map``, and ``filter``, which are not vectorized (slower than ``map_batches``), but may be useful for development. By default, transformations are executed using Ray tasks. For transformations that require setup, specify ``compute=ray.data.ActorPoolStrategy(min, max)`` and Ray will use an autoscaling actor pool of ``min`` to ``max`` actors to execute your transforms. For a fixed-size actor pool, specify ``ActorPoolStrategy(n, n)``. The following is an end-to-end example of reading, transforming, and saving batch inference results using Ray Data: .. code-block:: python from ray.data import ActorPoolStrategy # Example of GPU batch inference on an ImageNet model. def preprocess(images: List[bytes]) -> List[bytes]: return images class BatchInferModel: def __init__(self): self.model = ImageNetModel() def __call__(self, batch: pd.DataFrame) -> pd.DataFrame: return self.model(batch) ds = ray.data.read_binary_files("s3://bucket/image-dir") # Preprocess the data. ds = ds.map_batches(preprocess) # -> Map Progress: 100%|████████████████████| 200/200 [00:00<00:00, 1123.54it/s] # Apply GPU batch inference with actors, and assign each actor a GPU using # ``num_gpus=1`` (any Ray remote decorator argument can be used here). ds = ds.map_batches( BatchInferModel, compute=ActorPoolStrategy(10, 20), batch_size=256, num_gpus=1) # -> Map Progress (16 actors 4 pending): 100%|██████| 200/200 [00:07, 27.60it/s] # Save the results. ds.repartition(1).write_json("s3://bucket/inference-results") Passing and accessing datasets ============================== Datasets can be passed to Ray tasks or actors and accessed with ``.iter_batches()`` or ``.iter_rows()``. This does not incur a copy, since the blocks of the Dataset are passed by reference as Ray objects: .. code-block:: python @ray.remote def consume(data: Dataset[int]) -> int: num_batches = 0 for batch in data.iter_batches(): num_batches += 1 return num_batches ds = ray.data.range(10000) ray.get(consume.remote(ds)) # -> 200 Datasets can be split up into disjoint sub-datasets. Locality-aware splitting is supported if you pass in a list of actor handles to the ``split()`` function along with the number of desired splits. This is a common pattern useful for loading and splitting data between distributed training actors: .. code-block:: python @ray.remote(num_gpus=1) class Worker: def __init__(self, rank: int): pass def train(self, shard: ray.data.Dataset[int]) -> int: for batch in shard.iter_batches(batch_size=256): pass return shard.count() workers = [Worker.remote(i) for i in range(16)] # -> [Actor(Worker, ...), Actor(Worker, ...), ...] ds = ray.data.range(10000) # -> Dataset(num_blocks=200, num_rows=10000, schema=) shards = ds.split(n=16, locality_hints=workers) # -> [Dataset(num_blocks=13, num_rows=650, schema=), # Dataset(num_blocks=13, num_rows=650, schema=), ...] ray.get([w.train.remote(s) for w, s in zip(workers, shards)]) # -> [650, 650, ...]