import numpy as np import os import tracemalloc from typing import Dict, Optional, TYPE_CHECKING from ray.rllib.env.base_env import BaseEnv from ray.rllib.env.env_context import EnvContext from ray.rllib.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.evaluation.episode import Episode from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.utils.annotations import PublicAPI from ray.rllib.utils.deprecation import deprecation_warning from ray.rllib.utils.exploration.random_encoder import ( MovingMeanStd, compute_states_entropy, update_beta, ) from ray.rllib.utils.typing import AgentID, EnvType, PolicyID # Import psutil after ray so the packaged version is used. import psutil if TYPE_CHECKING: from ray.rllib.agents.trainer import Trainer from ray.rllib.evaluation import RolloutWorker @PublicAPI class DefaultCallbacks: """Abstract base class for RLlib callbacks (similar to Keras callbacks). These callbacks can be used for custom metrics and custom postprocessing. By default, all of these callbacks are no-ops. To configure custom training callbacks, subclass DefaultCallbacks and then set {"callbacks": YourCallbacksClass} in the trainer config. """ def __init__(self, legacy_callbacks_dict: Dict[str, callable] = None): if legacy_callbacks_dict: deprecation_warning( "callbacks dict interface", "a class extending rllib.agents.callbacks.DefaultCallbacks", ) self.legacy_callbacks = legacy_callbacks_dict or {} def on_sub_environment_created( self, *, worker: "RolloutWorker", sub_environment: EnvType, env_context: EnvContext, **kwargs, ) -> None: """Callback run when a new sub-environment has been created. This method gets callled after each sub-environment (usually a gym.Env) has been created, validated (RLlib built-in validation + possible custom validation function implemented by overriding `Trainer.validate_env()`), wrapped (e.g. video-wrapper), and seeded. Args: worker: Reference to the current rollout worker. sub_environment: The sub-environment instance that has been created. This is usally a gym.Env object. env_context: The `EnvContext` object that has been passed to the env's constructor. kwargs: Forward compatibility placeholder. """ pass def on_episode_start( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode, **kwargs, ) -> None: """Callback run on the rollout worker before each episode starts. Args: worker: Reference to the current rollout worker. base_env: BaseEnv running the episode. The underlying sub environment objects can be retrieved by calling `base_env.get_sub_environments()`. policies: Mapping of policy id to policy objects. In single agent mode there will only be a single "default" policy. episode: Episode object which contains the episode's state. You can use the `episode.user_data` dict to store temporary data, and `episode.custom_metrics` to store custom metrics for the episode. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_episode_start"): self.legacy_callbacks["on_episode_start"]( { "env": base_env, "policy": policies, "episode": episode, } ) def on_episode_step( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Optional[Dict[PolicyID, Policy]] = None, episode: Episode, **kwargs, ) -> None: """Runs on each episode step. Args: worker: Reference to the current rollout worker. base_env: BaseEnv running the episode. The underlying sub environment objects can be retrieved by calling `base_env.get_sub_environments()`. policies: Mapping of policy id to policy objects. In single agent mode there will only be a single "default_policy". episode: Episode object which contains episode state. You can use the `episode.user_data` dict to store temporary data, and `episode.custom_metrics` to store custom metrics for the episode. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_episode_step"): self.legacy_callbacks["on_episode_step"]( {"env": base_env, "episode": episode} ) def on_episode_end( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode, **kwargs, ) -> None: """Runs when an episode is done. Args: worker: Reference to the current rollout worker. base_env: BaseEnv running the episode. The underlying sub environment objects can be retrieved by calling `base_env.get_sub_environments()`. policies: Mapping of policy id to policy objects. In single agent mode there will only be a single "default_policy". episode: Episode object which contains episode state. You can use the `episode.user_data` dict to store temporary data, and `episode.custom_metrics` to store custom metrics for the episode. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_episode_end"): self.legacy_callbacks["on_episode_end"]( { "env": base_env, "policy": policies, "episode": episode, } ) def on_postprocess_trajectory( self, *, worker: "RolloutWorker", episode: Episode, agent_id: AgentID, policy_id: PolicyID, policies: Dict[PolicyID, Policy], postprocessed_batch: SampleBatch, original_batches: Dict[AgentID, SampleBatch], **kwargs, ) -> None: """Called immediately after a policy's postprocess_fn is called. You can use this callback to do additional postprocessing for a policy, including looking at the trajectory data of other agents in multi-agent settings. Args: worker: Reference to the current rollout worker. episode: Episode object. agent_id: Id of the current agent. policy_id: Id of the current policy for the agent. policies: Mapping of policy id to policy objects. In single agent mode there will only be a single "default_policy". postprocessed_batch: The postprocessed sample batch for this agent. You can mutate this object to apply your own trajectory postprocessing. original_batches: Mapping of agents to their unpostprocessed trajectory data. You should not mutate this object. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_postprocess_traj"): self.legacy_callbacks["on_postprocess_traj"]( { "episode": episode, "agent_id": agent_id, "pre_batch": original_batches[agent_id], "post_batch": postprocessed_batch, "all_pre_batches": original_batches, } ) def on_sample_end( self, *, worker: "RolloutWorker", samples: SampleBatch, **kwargs ) -> None: """Called at the end of RolloutWorker.sample(). Args: worker: Reference to the current rollout worker. samples: Batch to be returned. You can mutate this object to modify the samples generated. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_sample_end"): self.legacy_callbacks["on_sample_end"]( { "worker": worker, "samples": samples, } ) def on_learn_on_batch( self, *, policy: Policy, train_batch: SampleBatch, result: dict, **kwargs ) -> None: """Called at the beginning of Policy.learn_on_batch(). Note: This is called before 0-padding via `pad_batch_to_sequences_of_same_size`. Also note, SampleBatch.INFOS column will not be available on train_batch within this callback if framework is tf1, due to the fact that tf1 static graph would mistake it as part of the input dict if present. It is available though, for tf2 and torch frameworks. Args: policy: Reference to the current Policy object. train_batch: SampleBatch to be trained on. You can mutate this object to modify the samples generated. result: A results dict to add custom metrics to. kwargs: Forward compatibility placeholder. """ pass def on_train_result(self, *, trainer: "Trainer", result: dict, **kwargs) -> None: """Called at the end of Trainable.train(). Args: trainer: Current trainer instance. result: Dict of results returned from trainer.train() call. You can mutate this object to add additional metrics. kwargs: Forward compatibility placeholder. """ if self.legacy_callbacks.get("on_train_result"): self.legacy_callbacks["on_train_result"]( { "trainer": trainer, "result": result, } ) class MemoryTrackingCallbacks(DefaultCallbacks): """MemoryTrackingCallbacks can be used to trace and track memory usage in rollout workers. The Memory Tracking Callbacks uses tracemalloc and psutil to track python allocations during rollouts, in training or evaluation. The tracking data is logged to the custom_metrics of an episode and can therefore be viewed in tensorboard (or in WandB etc..) Add MemoryTrackingCallbacks callback to the tune config e.g. { ...'callbacks': MemoryTrackingCallbacks ...} Note: This class is meant for debugging and should not be used in production code as tracemalloc incurs a significant slowdown in execution speed. """ def __init__(self): super().__init__() # Will track the top 10 lines where memory is allocated tracemalloc.start(10) def on_episode_end( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode, env_index: Optional[int] = None, **kwargs, ) -> None: snapshot = tracemalloc.take_snapshot() top_stats = snapshot.statistics("lineno") for stat in top_stats[:10]: count = stat.count size = stat.size trace = str(stat.traceback) episode.custom_metrics[f"tracemalloc/{trace}/size"] = size episode.custom_metrics[f"tracemalloc/{trace}/count"] = count process = psutil.Process(os.getpid()) worker_rss = process.memory_info().rss worker_data = process.memory_info().data worker_vms = process.memory_info().vms episode.custom_metrics["tracemalloc/worker/rss"] = worker_rss episode.custom_metrics["tracemalloc/worker/data"] = worker_data episode.custom_metrics["tracemalloc/worker/vms"] = worker_vms class MultiCallbacks(DefaultCallbacks): """MultiCallbacks allows multiple callbacks to be registered at the same time in the config of the environment. Example: .. code-block:: python 'callbacks': MultiCallbacks([ MyCustomStatsCallbacks, MyCustomVideoCallbacks, MyCustomTraceCallbacks, .... ]) """ def __init__(self, callback_class_list): super().__init__() self._callback_class_list = callback_class_list self._callback_list = [] def __call__(self, *args, **kwargs): self._callback_list = [ callback_class() for callback_class in self._callback_class_list ] return self def on_episode_start( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode, env_index: Optional[int] = None, **kwargs, ) -> None: for callback in self._callback_list: callback.on_episode_start( worker=worker, base_env=base_env, policies=policies, episode=episode, env_index=env_index, **kwargs, ) def on_episode_step( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Optional[Dict[PolicyID, Policy]] = None, episode: Episode, env_index: Optional[int] = None, **kwargs, ) -> None: for callback in self._callback_list: callback.on_episode_step( worker=worker, base_env=base_env, policies=policies, episode=episode, env_index=env_index, **kwargs, ) def on_episode_end( self, *, worker: "RolloutWorker", base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode, env_index: Optional[int] = None, **kwargs, ) -> None: for callback in self._callback_list: callback.on_episode_end( worker=worker, base_env=base_env, policies=policies, episode=episode, env_index=env_index, **kwargs, ) def on_postprocess_trajectory( self, *, worker: "RolloutWorker", episode: Episode, agent_id: AgentID, policy_id: PolicyID, policies: Dict[PolicyID, Policy], postprocessed_batch: SampleBatch, original_batches: Dict[AgentID, SampleBatch], **kwargs, ) -> None: for callback in self._callback_list: callback.on_postprocess_trajectory( worker=worker, episode=episode, agent_id=agent_id, policy_id=policy_id, policies=policies, postprocessed_batch=postprocessed_batch, original_batches=original_batches, **kwargs, ) def on_sample_end( self, *, worker: "RolloutWorker", samples: SampleBatch, **kwargs ) -> None: for callback in self._callback_list: callback.on_sample_end(worker=worker, samples=samples, **kwargs) def on_learn_on_batch( self, *, policy: Policy, train_batch: SampleBatch, result: dict, **kwargs ) -> None: for callback in self._callback_list: callback.on_learn_on_batch( policy=policy, train_batch=train_batch, result=result, **kwargs ) def on_train_result(self, *, trainer, result: dict, **kwargs) -> None: for callback in self._callback_list: callback.on_train_result(trainer=trainer, result=result, **kwargs) # This Callback is used by the RE3 exploration strategy. # See rllib/examples/re3_exploration.py for details. class RE3UpdateCallbacks(DefaultCallbacks): """Update input callbacks to mutate batch with states entropy rewards.""" _step = 0 def __init__( self, *args, embeds_dim: int = 128, k_nn: int = 50, beta: float = 0.1, rho: float = 0.0001, beta_schedule: str = "constant", **kwargs, ): self.embeds_dim = embeds_dim self.k_nn = k_nn self.beta = beta self.rho = rho self.beta_schedule = beta_schedule self._rms = MovingMeanStd() super().__init__(*args, **kwargs) def on_learn_on_batch( self, *, policy: Policy, train_batch: SampleBatch, result: dict, **kwargs, ): super().on_learn_on_batch( policy=policy, train_batch=train_batch, result=result, **kwargs ) states_entropy = compute_states_entropy( train_batch[SampleBatch.OBS_EMBEDS], self.embeds_dim, self.k_nn ) states_entropy = update_beta( self.beta_schedule, self.beta, self.rho, RE3UpdateCallbacks._step ) * np.reshape( self._rms(states_entropy), train_batch[SampleBatch.OBS_EMBEDS].shape[:-1], ) train_batch[SampleBatch.REWARDS] = ( train_batch[SampleBatch.REWARDS] + states_entropy ) if Postprocessing.ADVANTAGES in train_batch: train_batch[Postprocessing.ADVANTAGES] = ( train_batch[Postprocessing.ADVANTAGES] + states_entropy ) train_batch[Postprocessing.VALUE_TARGETS] = ( train_batch[Postprocessing.VALUE_TARGETS] + states_entropy ) def on_train_result(self, *, trainer, result: dict, **kwargs) -> None: # TODO(gjoliver): Remove explicit _step tracking and pass # trainer._iteration as a parameter to on_learn_on_batch() call. RE3UpdateCallbacks._step = result["training_iteration"] super().on_train_result(trainer=trainer, result=result, **kwargs)