import unittest import ray import ray.rllib.agents.a3c as a3c from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY from ray.rllib.utils.test_utils import ( check_compute_single_action, check_train_results, framework_iterator, ) class TestA3C(unittest.TestCase): """Sanity tests for A2C exec impl.""" def setUp(self): ray.init(num_cpus=4) def tearDown(self): ray.shutdown() def test_a3c_compilation(self): """Test whether an A3CTrainer can be built with both frameworks.""" config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["num_envs_per_worker"] = 2 num_iterations = 2 # Test against all frameworks. for _ in framework_iterator(config, with_eager_tracing=True): for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]: print("env={}".format(env)) config["model"]["use_lstm"] = env == "CartPole-v1" trainer = a3c.A3CTrainer(config=config, env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action( trainer, include_state=config["model"]["use_lstm"] ) trainer.stop() def test_a3c_entropy_coeff_schedule(self): """Test A3CTrainer entropy coeff schedule support.""" config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 1 config["num_envs_per_worker"] = 1 config["train_batch_size"] = 20 config["batch_mode"] = "truncate_episodes" config["rollout_fragment_length"] = 10 config["timesteps_per_iteration"] = 20 # 0 metrics reporting delay, this makes sure timestep, # which entropy coeff depends on, is updated after each worker rollout. config["min_time_s_per_reporting"] = 0 # Initial lr, doesn't really matter because of the schedule below. config["entropy_coeff"] = 0.01 schedule = [ [0, 0.01], [120, 0.0001], ] config["entropy_coeff_schedule"] = schedule def _step_n_times(trainer, n: int): """Step trainer n times. Returns: learning rate at the end of the execution. """ for _ in range(n): results = trainer.train() return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][LEARNER_STATS_KEY][ "entropy_coeff" ] # Test against all frameworks. for _ in framework_iterator(config): trainer = a3c.A3CTrainer(config=config, env="CartPole-v1") coeff = _step_n_times(trainer, 1) # 20 timesteps # Should be close to the starting coeff of 0.01 self.assertGreaterEqual(coeff, 0.005) coeff = _step_n_times(trainer, 10) # 200 timesteps # Should have annealed to the final coeff of 0.0001. self.assertLessEqual(coeff, 0.00011) trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))