from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ray from ray import tune from ray.rllib.agents.trainer_template import build_trainer from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.torch_policy_template import build_torch_policy parser = argparse.ArgumentParser() parser.add_argument("--iters", type=int, default=200) def policy_gradient_loss(policy, model, dist_class, train_batch): logits, _ = model({SampleBatch.CUR_OBS: train_batch[SampleBatch.CUR_OBS]}) action_dist = dist_class(logits, model) log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS]) return -train_batch[SampleBatch.REWARDS].dot(log_probs) # MyTorchPolicy = build_torch_policy( name="MyTorchPolicy", loss_fn=policy_gradient_loss) # MyTrainer = build_trainer( name="MyCustomTrainer", default_policy=MyTorchPolicy, ) if __name__ == "__main__": ray.init() args = parser.parse_args() tune.run( MyTrainer, stop={"training_iteration": args.iters}, config={ "env": "CartPole-v0", "num_workers": 2, })