from typing import Union

from ray.rllib.utils.framework import try_import_torch
from ray.rllib.models.torch.misc import SlimFC
from ray.rllib.utils.torch_utils import sequence_mask
from ray.rllib.utils.typing import TensorType

torch, nn = try_import_torch()


class RelativePositionEmbedding(nn.Module):
    """Creates a [seq_length x seq_length] matrix for rel. pos encoding.

    Denoted as Phi in [2] and [3]. Phi is the standard sinusoid encoding
    matrix.

    Args:
        seq_length: The max. sequence length (time axis).
        out_dim: The number of nodes to go into the first Tranformer
            layer with.

    Returns:
        torch.Tensor: The encoding matrix Phi.
    """

    def __init__(self, out_dim, **kwargs):
        super().__init__()
        self.out_dim = out_dim

        out_range = torch.arange(0, self.out_dim, 2.0)
        inverse_freq = 1 / (10000 ** (out_range / self.out_dim))
        self.register_buffer("inverse_freq", inverse_freq)

    def forward(self, seq_length):
        pos_input = torch.arange(seq_length - 1, -1, -1.0, dtype=torch.float).to(
            self.inverse_freq.device
        )
        sinusoid_input = torch.einsum("i,j->ij", pos_input, self.inverse_freq)
        pos_embeddings = torch.cat(
            [torch.sin(sinusoid_input), torch.cos(sinusoid_input)], dim=-1
        )
        return pos_embeddings[:, None, :]


class RelativeMultiHeadAttention(nn.Module):
    """A RelativeMultiHeadAttention layer as described in [3].

    Uses segment level recurrence with state reuse.
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        num_heads: int,
        head_dim: int,
        input_layernorm: bool = False,
        output_activation: Union[str, callable] = None,
        **kwargs
    ):
        """Initializes a RelativeMultiHeadAttention nn.Module object.

        Args:
            in_dim (int):
            out_dim: The output dimension of this module. Also known as
                "attention dim".
            num_heads: The number of attention heads to use.
                Denoted `H` in [2].
            head_dim: The dimension of a single(!) attention head
                Denoted `D` in [2].
            input_layernorm: Whether to prepend a LayerNorm before
                everything else. Should be True for building a GTrXL.
            output_activation (Union[str, callable]): Optional activation
                function or activation function specifier (str).
                Should be "relu" for GTrXL.
            **kwargs:
        """
        super().__init__(**kwargs)

        # No bias or non-linearity.
        self._num_heads = num_heads
        self._head_dim = head_dim

        # 3=Query, key, and value inputs.
        self._qkv_layer = SlimFC(
            in_size=in_dim, out_size=3 * num_heads * head_dim, use_bias=False
        )

        self._linear_layer = SlimFC(
            in_size=num_heads * head_dim,
            out_size=out_dim,
            use_bias=False,
            activation_fn=output_activation,
        )

        self._uvar = nn.Parameter(torch.zeros(num_heads, head_dim))
        self._vvar = nn.Parameter(torch.zeros(num_heads, head_dim))
        nn.init.xavier_uniform_(self._uvar)
        nn.init.xavier_uniform_(self._vvar)
        self.register_parameter("_uvar", self._uvar)
        self.register_parameter("_vvar", self._vvar)

        self._pos_proj = SlimFC(
            in_size=in_dim, out_size=num_heads * head_dim, use_bias=False
        )
        self._rel_pos_embedding = RelativePositionEmbedding(out_dim)

        self._input_layernorm = None
        if input_layernorm:
            self._input_layernorm = torch.nn.LayerNorm(in_dim)

    def forward(self, inputs: TensorType, memory: TensorType = None) -> TensorType:
        T = list(inputs.size())[1]  # length of segment (time)
        H = self._num_heads  # number of attention heads
        d = self._head_dim  # attention head dimension

        # Add previous memory chunk (as const, w/o gradient) to input.
        # Tau (number of (prev) time slices in each memory chunk).
        Tau = list(memory.shape)[1]
        inputs = torch.cat((memory.detach(), inputs), dim=1)

        # Apply the Layer-Norm.
        if self._input_layernorm is not None:
            inputs = self._input_layernorm(inputs)

        qkv = self._qkv_layer(inputs)

        queries, keys, values = torch.chunk(input=qkv, chunks=3, dim=-1)
        # Cut out Tau memory timesteps from query.
        queries = queries[:, -T:]

        queries = torch.reshape(queries, [-1, T, H, d])
        keys = torch.reshape(keys, [-1, Tau + T, H, d])
        values = torch.reshape(values, [-1, Tau + T, H, d])

        R = self._pos_proj(self._rel_pos_embedding(Tau + T))
        R = torch.reshape(R, [Tau + T, H, d])

        # b=batch
        # i and j=time indices (i=max-timesteps (inputs); j=Tau memory space)
        # h=head
        # d=head-dim (over which we will reduce-sum)
        score = torch.einsum("bihd,bjhd->bijh", queries + self._uvar, keys)
        pos_score = torch.einsum("bihd,jhd->bijh", queries + self._vvar, R)
        score = score + self.rel_shift(pos_score)
        score = score / d ** 0.5

        # causal mask of the same length as the sequence
        mask = sequence_mask(torch.arange(Tau + 1, Tau + T + 1), dtype=score.dtype).to(
            score.device
        )
        mask = mask[None, :, :, None]

        masked_score = score * mask + 1e30 * (mask.float() - 1.0)
        wmat = nn.functional.softmax(masked_score, dim=2)

        out = torch.einsum("bijh,bjhd->bihd", wmat, values)
        shape = list(out.shape)[:2] + [H * d]
        out = torch.reshape(out, shape)

        return self._linear_layer(out)

    @staticmethod
    def rel_shift(x: TensorType) -> TensorType:
        # Transposed version of the shift approach described in [3].
        # https://github.com/kimiyoung/transformer-xl/blob/
        # 44781ed21dbaec88b280f74d9ae2877f52b492a5/tf/model.py#L31
        x_size = list(x.shape)

        x = torch.nn.functional.pad(x, (0, 0, 1, 0, 0, 0, 0, 0))
        x = torch.reshape(x, [x_size[0], x_size[2] + 1, x_size[1], x_size[3]])
        x = x[:, 1:, :, :]
        x = torch.reshape(x, x_size)

        return x