import numpy as np from ray.rllib.utils.framework import get_activation_fn, try_import_torch from ray.rllib.utils.framework import get_variable torch, nn = try_import_torch() class NoisyLayer(nn.Module): """A Layer that adds learnable Noise a common dense layer: y = w^{T}x + b a noisy layer: y = (w + \\epsilon_w*\\sigma_w)^{T}x + (b+\\epsilon_b*\\sigma_b) where \epsilon are random variables sampled from factorized normal distributions and \\sigma are trainable variables which are expected to vanish along the training procedure """ def __init__(self, in_size, out_size, sigma0, activation="relu"): """Initializes a NoisyLayer object. Args: in_size: out_size: sigma0: non_linear: """ super().__init__() self.in_size = in_size self.out_size = out_size self.sigma0 = sigma0 self.activation = get_activation_fn(activation, framework="torch") if self.activation is not None: self.activation = self.activation() self.sigma_w = get_variable( np.random.uniform( low=-1.0 / np.sqrt(float(self.in_size)), high=1.0 / np.sqrt(float(self.in_size)), size=[self.in_size, out_size]), framework="torch", dtype=torch.float32, torch_tensor=True, trainable=True) self.sigma_b = get_variable( np.full( shape=[out_size], fill_value=sigma0 / np.sqrt(float(self.in_size))), framework="torch", dtype=torch.float32, torch_tensor=True, trainable=True) self.w = get_variable( np.full( shape=[self.in_size, self.out_size], fill_value=6 / np.sqrt(float(in_size) + float(out_size))), framework="torch", dtype=torch.float32, torch_tensor=True, trainable=True) self.b = get_variable( np.zeros([out_size]), framework="torch", dtype=torch.float32, torch_tensor=True, trainable=True) def forward(self, inputs): epsilon_in = self._f_epsilon(torch.normal( mean=torch.zeros([self.in_size]), std=torch.ones([self.in_size]))) epsilon_out = self._f_epsilon(torch.normal( mean=torch.zeros([self.out_size]), std=torch.ones([self.out_size]))) epsilon_w = torch.matmul( torch.unsqueeze(epsilon_in, -1), other=torch.unsqueeze(epsilon_out, 0)) epsilon_b = epsilon_out action_activation = torch.matmul( inputs, self.w + self.sigma_w * epsilon_w ) + self.b + self.sigma_b * epsilon_b if self.activation is not None: action_activation = self.activation(action_activation) return action_activation def _f_epsilon(self, x): return torch.sign(x) * torch.pow(torch.abs(x), 0.5)