# This code is copied and adapted from Andrej Karpathy's code for learning to # play Pong https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5. import numpy as np import cPickle as pickle import gym import ray import ray.services as services import os import functions worker_dir = os.path.dirname(os.path.abspath(__file__)) worker_path = os.path.join(worker_dir, "worker.py") services.start_ray_local(num_workers=10, worker_path=worker_path) # hyperparameters H = 200 # number of hidden layer neurons batch_size = 10 # every how many episodes to do a param update? learning_rate = 1e-4 decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2 resume = False # resume from previous checkpoint? running_reward = None batch_num = 1 D = functions.D # input dimensionality: 80x80 grid if resume: model = pickle.load(open("save.p", "rb")) else: model = {} model["W1"] = np.random.randn(H, D) / np.sqrt(D) # "Xavier" initialization model["W2"] = np.random.randn(H) / np.sqrt(H) grad_buffer = {k: np.zeros_like(v) for k, v in model.iteritems()} # update buffers that add up gradients over a batch rmsprop_cache = {k: np.zeros_like(v) for k, v in model.iteritems()} # rmsprop memory while True: modelref = ray.put(model) grads = [] for i in range(batch_size): grads.append(functions.compgrad(modelref)) for i in range(batch_size): grad = ray.get(grads[i]) for k in model: grad_buffer[k] += grad[0][k] # accumulate grad over batch running_reward = grad[1] if running_reward is None else running_reward * 0.99 + grad[1] * 0.01 print "Batch {}. episode reward total was {}. running mean: {}".format(batch_num, grad[1], running_reward) for k, v in model.iteritems(): g = grad_buffer[k] # gradient rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g ** 2 model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5) grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer batch_num += 1 if batch_num % 10 == 0: pickle.dump(model, open("save.p", "wb"))