from ray.rllib.utils.exploration.epsilon_greedy import EpsilonGreedy from ray.rllib.utils.schedules import ConstantSchedule class PerWorkerEpsilonGreedy(EpsilonGreedy): """A per-worker epsilon-greedy class for distributed algorithms. Sets the epsilon schedules of individual workers to a constant: 0.4 ^ (1 + [worker-index] / float([num-workers] - 1) * 7) See Ape-X paper. """ def __init__(self, action_space, *, framework, num_workers, worker_index, **kwargs): """Create a PerWorkerEpsilonGreedy exploration class. Args: action_space (Space): The gym action space used by the environment. num_workers (Optional[int]): The overall number of workers used. worker_index (Optional[int]): The index of the Worker using this Exploration. framework (Optional[str]): One of None, "tf", "torch". """ epsilon_schedule = None # Use a fixed, different epsilon per worker. See: Ape-X paper. assert worker_index <= num_workers, (worker_index, num_workers) if num_workers > 0: if worker_index > 0: # From page 5 of https://arxiv.org/pdf/1803.00933.pdf alpha, eps, i = 7, 0.4, worker_index - 1 epsilon_schedule = ConstantSchedule( eps**(1 + i / (num_workers - 1) * alpha), framework=framework) # Local worker should have zero exploration so that eval # rollouts run properly. else: epsilon_schedule = ConstantSchedule(0.0, framework=framework) super().__init__( action_space, epsilon_schedule=epsilon_schedule, framework=framework, num_workers=num_workers, worker_index=worker_index, **kwargs)