"""Example of using a custom model with batch norm.""" import argparse import os import ray from ray import tune from ray.rllib.examples.models.batch_norm_model import BatchNormModel, \ KerasBatchNormModel, TorchBatchNormModel from ray.rllib.models import ModelCatalog from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init() ModelCatalog.register_custom_model( "bn_model", TorchBatchNormModel if args.framework == "torch" else KerasBatchNormModel if args.run != "PPO" else BatchNormModel) config = { "env": "Pendulum-v0" if args.run in ["DDPG", "SAC"] else "CartPole-v0", "model": { "custom_model": "bn_model", }, "lr": 0.0003, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 0, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, stop=stop, config=config, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()