"""Example of using a custom ModelV2 Keras-style model.""" import argparse import ray from ray import tune from ray.rllib.models import ModelCatalog from ray.rllib.models.tf.misc import normc_initializer from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.agents.dqn.distributional_q_model import DistributionalQModel from ray.rllib.utils import try_import_tf from ray.rllib.models.tf.visionnet_v2 import VisionNetwork as MyVisionNetwork tf = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="DQN") # Try PG, PPO, DQN parser.add_argument("--stop", type=int, default=200) parser.add_argument("--use_vision_network", action="store_true") class MyKerasModel(TFModelV2): """Custom model for policy gradient algorithms.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(MyKerasModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) self.inputs = tf.keras.layers.Input( shape=obs_space.shape, name="observations") layer_1 = tf.keras.layers.Dense( 128, name="my_layer1", activation=tf.nn.relu, kernel_initializer=normc_initializer(1.0))(self.inputs) layer_out = tf.keras.layers.Dense( num_outputs, name="my_out", activation=None, kernel_initializer=normc_initializer(0.01))(layer_1) value_out = tf.keras.layers.Dense( 1, name="value_out", activation=None, kernel_initializer=normc_initializer(0.01))(layer_1) self.base_model = tf.keras.Model(self.inputs, [layer_out, value_out]) self.register_variables(self.base_model.variables) def forward(self, input_dict, state, seq_lens): model_out, self._value_out = self.base_model(input_dict["obs"]) return model_out, state def value_function(self): return tf.reshape(self._value_out, [-1]) class MyKerasQModel(DistributionalQModel): """Custom model for DQN.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name, **kw): super(MyKerasQModel, self).__init__( obs_space, action_space, num_outputs, model_config, name, **kw) # Define the core model layers which will be used by the other # output heads of DistributionalQModel self.inputs = tf.keras.layers.Input( shape=obs_space.shape, name="observations") layer_1 = tf.keras.layers.Dense( 128, name="my_layer1", activation=tf.nn.relu, kernel_initializer=normc_initializer(1.0))(self.inputs) layer_out = tf.keras.layers.Dense( num_outputs, name="my_out", activation=tf.nn.relu, kernel_initializer=normc_initializer(1.0))(layer_1) self.base_model = tf.keras.Model(self.inputs, layer_out) self.register_variables(self.base_model.variables) # Implement the core forward method def forward(self, input_dict, state, seq_lens): model_out = self.base_model(input_dict["obs"]) return model_out, state if __name__ == "__main__": ray.init() args = parser.parse_args() ModelCatalog.register_custom_model( "keras_model", MyVisionNetwork if args.use_vision_network else MyKerasModel) ModelCatalog.register_custom_model( "keras_q_model", MyVisionNetwork if args.use_vision_network else MyKerasQModel) tune.run( args.run, stop={"episode_reward_mean": args.stop}, config={ "env": "BreakoutNoFrameskip-v4" if args.use_vision_network else "CartPole-v0", "num_gpus": 0, "model": { "custom_model": "keras_q_model" if args.run == "DQN" else "keras_model" }, })