import gym from typing import Type class ActionTransform(gym.ActionWrapper): def __init__(self, env, low, high): super().__init__(env) self._low = low self._high = high self.action_space = type(env.action_space)( self._low, self._high, env.action_space.shape, env.action_space.dtype ) def action(self, action): return (action - self._low) / (self._high - self._low) * ( self.env.action_space.high - self.env.action_space.low ) + self.env.action_space.low def transform_action_space(env_name_or_creator) -> Type[gym.Env]: """Wrapper for gym.Envs to have their action space transformed. Args: env_name_or_creator (Union[str, Callable[]]: String specifier or env_maker function. Returns: New transformed_action_space_env function that returns an environment wrapped by the ActionTransform wrapper. The constructor takes a config dict with `_low` and `_high` keys specifying the new action range (default -1.0 to 1.0). The reset of the config dict will be passed on to the underlying/wrapped env's constructor. Examples: >>> # By gym string: >>> pendulum_300_to_500_cls = transform_action_space("Pendulum-v1") >>> # Create a transformed pendulum env. >>> pendulum_300_to_500 = pendulum_300_to_500_cls({"_low": -15.0}) >>> pendulum_300_to_500.action_space ... gym.spaces.Box(-15.0, 1.0, (1, ), "float32") """ def transformed_action_space_env(config): if isinstance(env_name_or_creator, str): inner_env = gym.make(env_name_or_creator) else: inner_env = env_name_or_creator(config) _low = config.pop("low", -1.0) _high = config.pop("high", 1.0) env = ActionTransform(inner_env, _low, _high) return env return transformed_action_space_env TransformedActionPendulum = transform_action_space("Pendulum-v1")